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Abstract

Spurious regression under stationary processes exhibiting long memory was studied by Tsay and
Chung (2000) [JoE 96, pp. 155-182] for a univariate model. We extend their findings for the
multivariate linear regression and find that inference drawn from the latter is also spurious. Our
results hold for any finite number of independent stationary fractionally integrated explanatory
variables. It is shown that the t-statistics associated to the estimated parameters diverge if
the processes underlying the dependent variable and the particular explanatory variable are
sufficiently persistent. It is shown also that inference drawn from test statistics and goodness of fit
measures, such as the Wald F statistic and the R2 can be contradictory in the sense that the test of
joint significance may reject the null hypothesis if the underlying variables are strongly persistent,
indicating incorrectly that at least one of the explanatory variables affects the dependent variable,
whereas the latter always converges to zero, supporting the correct assertion that the variables
used as regressors do not explain the variable used as regressand. Comprehensive finite sample
evidence is consistent with our asymptotic results and shows that they hold even for small sample
sizes such as 100 observations.

Keywords: fractional integration, long memory, spurious regression
JEL classification: C12, C13, C15, C22
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Chapter 1

Introduction

Spurious regression in empirical econometrics is widely understood as the failure of conventional

testing procedures when the series exhibit strong persistence. In economics, the levels of many

macroeconomic time series are known to behave as nonstationary processes, which is in turn

known to lead to spurious inference. Granger and Newbold (1974) first studied the problem

of spurious regression through simulations. They generate series as independent driftless unit

root processes and subsequently carry out a simple regression using these as regressand and the

single regressor. They then test the significance of the coefficient associated to the slope and

find that, contrary to what should occur in the absence of spurious effects, the rejection rate of

the null hypothesis is quite high, which suggests a linear relationship between the variables that

evidently does not exist in the underlying series. Furthermore, they find moderately high values

for the coefficient of determination (R2), which suggests that a fair amount of the variation in

the dependent variable is explained by the independent variable, and low values for the Durbin-

Watson statistic (DW ), which, for its part, suggests a high positive first autocorrelation of the

residuals.

Phillips (1986) explained Granger and Newbold’s results analytically by studying the asymp-

totic properties of the statistics associated to the regression. In a univariate linear regression

with independent unit root processes, he shows that the t-ratio test statistic does not tend toward
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a limiting distribution, but rather diverges as the sample size (T ) approaches infinity, which

implies that the null hypothesis will be rejected and thus a statistic relationship between the two

independent variables will be erroneously established. Additionally, he finds that the spurious

effects extend to the estimated coefficient associated to the intercept, which diverges, and to the

estimated coefficient associated to the slope and the R2, both of which have a non-degenerate

limiting distribution. Further, he finds that the DW statistic converges in probability to 0.

As for fractionally integrated processes, these were introduced by Granger and Joyeux (1980)

and Hosking (1981) as a generalization of Box and Jenkins (1976) ARIMA models where

the integration parameter d is allowed to adopt any real value rather than being restricted to

integers. This allows the modeling of long-range dependence with 0 < d < 1
2 . A series is said

to exhibit long memory, another term for long-range dependence, if absolute summability of

the autocorrelations does not hold. When 0 < d < 1
2 , the autocovariance function declines at a

hyperbolic rate, in contrast with the faster exponential rate of the conventional stationary ARMA

processes. Moreover, Hosking and Granger and Joyeux showed that if 0 < d < 1
2 then the process

is stationary.

The spurious regression phenomenon under fractional integration was first examined by

Cappuccio and Lubian (1997) and Marmol (1998), both of whom consider nonstationary fraction-

ally integrated processes. Cappuccio and Lubian studied univariate linear regressions between

I(d +1) processes with d ∈
(
−1

2 ,
1
2

)
. Marmol, on the other hand, analyzed linear regressions in

the levels of nonstationary fractionally integrated processes spuriously related in a multivariate

single-equation setting. He finds that the DW statistic converges to 0 and notes that the rule

of thumb proposed by Granger and Newbold to detect spurious regression, R2 > DW , is still

effective in the setting he described.

Tsay and Chung (2000), TC henceforth, studied the asymptotic properties of a regression

when independent stationary and nonstationary fractionally integrated processes are spuriously

related in a univariate single-equation setting. More precisely, TC showed that the ordinary least

squares (OLS) estimates have orders of convergence which vary depending on the orders of
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integration of the processes; they may converge, diverge or even achieve non-degenerate limiting

distributions. Specifically, in regards to stationary processes, TC found that if the processes are

“strongly persistent,” such that the sum of their orders of integration is a value greater than 1
2 , then

spurious effects are present in the divergent t-ratio, but absent in the R2, which converges to 0,

albeit at a slower rate with respect to that under short memory processes.

Although Phillips (1986) and Durlauf and Phillips (1988) suggested that it is nonstationarity

that causes spurious effects, TC’s findings indicate that misleading inference can occur in a regres-

sion between two stationary I(d) processes (as long as the sum of their orders of integration is a

value greater than 1
2 ). They thus considered that strong persistence originates the spurious effects.

In other words, the causes of spurious regression can be better understood as “strong temporal

properties”, as explained by Granger et al. (2001). It is therefore important to consider spurious

regression not as a phenomenon exclusively associated with nonstationarity or lack of ergodicity.

It is our aim to provide further theoretical and finite sample evidence that spurious effects are

due to the persistence of the series. We therefore extend TC’s findings concerning stationary

fractionally integrated processes to the case of a multivariate regression (TC’s corresponding

results deal only with a simple regression with one explanatory variable and a constant term).

Such an extension is important because: (i) the assumption that there is only one explanatory

variable in the model is restrictive, and; (ii) fractionally integrated processes are quite common in

empirical finance and macroeconomics. In a review of empirical literature, Baillie (1996) notes

that price series and Consumer Price Index inflation for several countries present behavior that

appears to exhibit long memory. Moreover, he mentions applications of fractionally integrated

models to asset prices, stock returns, exchange rates and interest rates.

We consider a specification with an arbitrary finite number of explanatory variables (although

inferior to the sample size), independent of each other and the dependent variable. Our results

show that when the sum of the persistence parameter of the dependent variable and that of a

particular regressor is above 1
2 , the t-ratio associated to the estimated coefficient of said regressor

diverges. Conversely, when the value of this sum is lower than 1
2 , the t-ratio does not diverge.
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The behavior of the F statistic is similar to that of the t-statistics, albeit dependent on the sum of

the persistence parameter of the regressand and the highest persistence parameter of the regressor

processes. Likewise, we find that the R2 does converge to 0 at a rate that also depends on the sum

of the order of integration of the regressand and the highest order of integration of the regressor

processes. Hence, if the underlying processes are persistent enough, spurious effects are present

in the divergent t and F statistics, but absent in the collapsing R2. As for the DW statistic, it

converges to a value in the interval (0,2) that depends negatively on the persistence parameter of

the process underlying the regressand.

The dissertation proceeds as follows: section 2 presents the theoretical framework, the main

asymptotic results, and the finite sample evidence that confirms our theoretical results. Section

3 concludes. Appendix A contains the proof of the theorem. Appendix B contains Tables 1-6

which display the Monte Carlo simulation results.
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Chapter 2

Asymptotic results and finite sample

evidence

We follow TC’s notation and define a fractionally integrated process, denoted FI(dz), as a

discrete-time stochastic process zt (for z = y, x1, . . . , xk) that satisfies (1−L)dzzt = az,t , where

L is the lag operator, dz is the fractional differencing parameter, and (1−L)d is the fractional

differencing operator, defined as (1−L)d = ∑
∞
j=0 Ψ jL j, where Ψ j =

Γ( j−d)
Γ( j+1)Γ(−d) and Γ(·) is the

gamma function. The innovations sequence az,t is Gaussian white noise with zero mean and

finite variance σ2
az

. A stationary fractionally integrated process is denoted here by SFI(dz); when

dz < 1/2, zt is stationary. Moreover, for dz ∈ (−1/2,1/2), zt is invertible. Its autocovariance

function is

γz( j) =
Γ(1−2dz)Γ(dz + j)

Γ(dz)Γ(1−dz)Γ(1−dz + j)
σ

2
az
,

and its first autocorrelation,

ρz(1) =
dz

1−dz
. (2.1)
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When dz > 0 the process is said to possess long memory since it exhibits long-range dependence

in the sense that ∑
∞
j=−∞ γz( j) = ∞.

This theoretical framework suffices to study the asymptotic behavior of a multivariate re-

gression under stationary long memory processes. As for the notation we employ, let β̂ j, for

j = 0,1, . . . ,k, denote the OLS estimators of the parameters, where β̂0 is the estimator of the

constant, and tβ j their associated t-statistics. Further, let s2 and s2
β̂ j

denote the estimated variance

of the residuals and the estimated variance of β̂ j, respectively. We make the following assumption

as to the data generating processes:

Assumption 1: Let yt and xi,t , for i = 1,2, . . . ,k and k < T , be independent stationary

fractionally integrated processes of orders dy and dxi , respectively, that satisfy (1−L)dzzt = εz,t ,

for z = y, xi, where εz,t are gaussian white noises with zero mean and finite variance σ2
ε,z, and

dz ∈
(
0, 1

2

)
. Suppose also that E [εz,t ]

qz < ∞ with qz ≥ max
{

4,− 8dz
1+2dz

}
for all z. Finally, we

define dx ≡max{dx1,dx2, . . . ,dxk}.

The theorem shows that inference drawn from a regression involving such processes can

indeed be misleading:

Theorem 1: Let Assumption 1 hold. Suppose that the linear specification yt = β0 +

∑
k
i=1 βixi,t +ut is estimated by OLS. Then, as T → ∞:

1. β̂i =


Op(T−

1
2 ) for dxi +dy <

1
2 ,

Op

[( lnT
T

) 1
2

]
for dxi +dy =

1
2 ,

Op(T dxi+dy−1) for 1
2 < dxi +dy,

for i = 1, . . . ,k.

2. T
1
2−dy β̂0 = Op(1).

3. s2 P→ γy(0).

4. T s2
β̂0

P→ γy(0),

T s2
β̂i

P→ γy(0)
γxi(0)

, for i = 1, . . . ,k.
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5. tβi =


Op(1) for dxi +dy <

1
2 ,

Op

[
(lnT )

1
2

]
for dxi +dy =

1
2 ,

Op(T dxi+dy− 1
2 ) for 1

2 < dxi +dy,

for i = 1, . . . ,k.

6. T−dytβ0 = Op(1).

7. R2 =


Op
(
T−1) for dx +dy <

1
2 ,

Op
(
T−1 lnT

)
for dx +dy =

1
2 ,

Op

[
T 2(dx+dy−1)

]
for 1

2 < dx +dy.

8. F =


Op (1) for dx +dy <

1
2 ,

Op (lnT ) for dx +dy =
1
2 ,

Op

[
T 2(dx+dy)−1

]
for 1

2 < dx +dy.

9. DW P→ 2−2ρy(1) =
2(1−2dy)

1−dy
.

We have P→ and Op(·) denote convergence in probability and order in probability, respectively.

Proof: See Appendix A.

Item 1 of the theorem shows that, independently of the persistence of the series, as long as

it remains stationary, all of the OLS-estimated coefficients collapse to zero as T → ∞, as could

be expected given that there is no linear relationship between the variables (i.e., the population

parameters are equal to zero). Nonetheless, the rate of convergence of each estimator β̂i, for

i = 1, . . . ,k, considerably varies depending on the value of dxi + dy. For 0 < dxi + dy <
1
2 , the

convergence rate is the usual T−
1
2 , but for dxi +dy =

1
2 , the convergence case is slightly slower.

If 1
2 < dxi +dy < 1, the convergence rate depends explicitly on the value of dxi +dy: as the value

of this sum approaches 1, the order in probability of the estimator approaches Op
(
T 0), and,

conversely, as it approaches 1
2 its order in probability approaches instead Op

(
T−1/2

)
. In other

words, the more persistent the process is, the slower the rate of convergence of the estimators.

From item 2 we can see that the estimate of the constant, β̂0, also collapses, at a rate dependent
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solely on dy; the more persistent the process used as regressand, the slower the constant estimate

converges to 0.

Furthermore, observe from item 3 that the estimator of the variance of the residuals is

consistent. Item 4 shows that the squares of the standard errors s2
β̂ j

converge at the usual rate

T−1. As in TC, it is the slower rate of convergence of the estimators which causes the t-ratios to

diverge. Spurious effects are observable in the t-ratio test statistics, as can be seen in item 5 of the

theorem. For 0 < dy +dxi <
1
2 , the t-ratio associated to β̂i does not diverge. Note, however, that

this does not necessarily mean there are no distortions, since the limiting distribution may well

depart from the standard normal, as we illustrate through finite sample evidence. For dy +dxi =
1
2

the t-ratios slowly diverge at rate (lnT )
1
2 . Such a rate ensures, asymptotically, that the null

hypothesis is eventually rejected, although the required sample size should be relatively large

(greater than 500 according to our simulations) due to the rather slow convergence rate. Finally,

for 1
2 < dy +dxi < 1, the t-ratios diverge at rate T c, where c ∈

(
0, 1

2

)
, and the rate of divergence

is directly dependent on dy +dxi .

The t-ratios diverge in TC because the authors assumed that the orders of integration of yt

and xt , the single regressor, are either always superior to 1
4 , or the sum of dx and dy is superior to

1
2 , which allows one of the orders in integration to be below 1

4 . In our case, it can be seen clearly

that whether the t-ratios diverge or not depends on the persistence of the process used as the

regressand and that of the particular regressor to which the t-ratio considered is associated. These

results are quite intuitive and consistent with TC. On the one hand, when the independent SFI

variables have a relatively low persistence parameters, the inference drawn from the regression

analysis tends to be more accurate; this is, the estimators of the parameters collapse faster towards

zero and the t-ratios do not diverge. When the persistence of the series is marginally stronger,

such that the sum of the orders of integration of the regressand and the regressor is equal to 1
2 , the

t-ratio diverges, albeit slowly, and the estimated coefficient collapses at a slightly slower rate. On

the other hand, when the persistence of the series is stronger, such that the value of this sum is

strictly greater than 1
2 , the risk of making spurious inference is higher, since the estimates collapse

8



to zero at a slower rate whilst the t-ratio diverges and the rates of convergence and divergence,

respectively, are directly dependent on the sum of the persistence parameters.

As for the standard statistical tools to draw inference from the regression, these provide

contradictory information. On the one hand, note from item 7 that the coefficient of determination

R2 converges in probability to zero for any dz ∈
(
0, 1

2

)
. Consequently, as the sample size increases,

the declining R2 correctly reflects the fact that the regressors do not explain the variations of

the variable used as regressand. On the other hand, observe from item 8 that the Wald statistic

diverges if dx +dy ≥ 1
2 , indicating that at least one of the explanatory variables has a considerable

influence on the behavior of the regressand variable, which is incorrect (though the divergence

rate is slow if the condition holds with equality). In this sense, the divergent F statistic and

the collapsing R2 are contradictory. Finally, Granger and Newbold’s (1974) rule of thumb for

detecting a spurious regression, R2 > DW , no longer applies in view of item 9, because the

asymptotic value of the DW depends solely on the memory parameter dy such that DW is in

the interval (0,2).

The theoretical results show that, under specific persistence properties, the risk of drawing

spurious inference from an OLS-estimated regression model using (long-range dependence)

stationary independent series increases as the sample size grows. We confirm this in finite

samples. All the series are generated as independent SFI(dz) processes, zt = (1−L)−dzaz,t ∼ I(dz)

for z = y, x1, x2, x3, and x4 and az,t ∼ i.i.d.N (0,σ2
a,z). We then use these series to estimate by

OLS the following three specifications: (1) yt = β0 +β1x1t +β2x2t + ut ; (2) yt = β0 +β1x1t +

β2x2t +β3x3t +ut ; (3) yt = β0 +β1x1t +β2x2t +β3x3t +β4x4t +ut . In Tables B.1 and B.2 all the

variables have the same persistence parameter, this is, dy = dx1 = . . .= dx4 < 1/2. Specifically,

Table B.1 shows results for d = 1/5, 1/4 and 3/10, whilst Table B.2 does it for d = 7/20, 2/5

and 9/20. In Tables B.4, B.5, and B.6 the persistence parameter is different for each variable,

though always inferior to 1/2. In these Tables we isolate the three cases found in our theoretical

analysis: dx +dy <
1
2 , dx +dy =

1
2 , and dx +dy >

1
2 . Tables B.4, B.5, and B.6, the three cases are
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studied under regressions involving two, three, and four regressors, respectively.1

By and large, the simulation results show that the rejection rates of the t-tests remain fairly

stable for 0 < dxi +dy <
1
2 , they slowly increase for dxi +dy =

1
2 , and increase at a faster pace

for 1
2 < dxi +dy < 1. As for the F joint significance test statistic, its behavior is analogous to

that of the t-ratios albeit dependent on dx + dy. Moreover, our simulations show that, as the

sample size increases, the R2 collapses to zero, whilst the DW approaches the value predicted in

item 9 of the theorem. In particular, when all processes have the same order of integration, for

0 < d < 1
4 , the theorem states that the t-ratios do not diverge. This is confirmed by simulations

(see Table B.1’s results in column 1, when d = 1/5), where the rejection rate remains stable

around 0.07−0.10 for sample sizes above 500 observations, but the simulations also show that

the distribution has heavier tails, since the actual rejection rates are systematically above the

nominal 5% for relatively high values of d. Moreover, simulations also show that the joint

significance test exhibits relatively adequate rejection rates (this is, close to the nominal 5%) for

small samples (100) and small values of d (see Table 1). The R2 are rather low even for samples

sizes as small as 100 observations. As for Tables B.4, B.5, and B.6, these results allow us to

observe that the behavior of the R2 and F statistic does indeed depend on the sum dx +dy. When

the value of this sum is lower than 1
2 the R2 takes lower values than in the other cases and the F

statistic is relatively stable. When the value of this sum is instead greater than or equal to 1
2 , the

R2 takes higher values and the F appears to grow as the sample size increases. These results are

in line with those of the theorem.

1For these simulations, Table B.3 shows the specific values of dz for each variable in each case.
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Chapter 3

Concluding remarks

We studied the asymptotic and the finite-sample behavior of the OLS-estimated multivariate

regression with an arbitrary finite number of regressors and a constant term, where all the variables

are independent stationary fractionally integrated processes. Our findings are in line with what is

already established in the literature. In particular, the asymptotic behavior of the estimates and

their associated t-ratios does not depend on the number of regressors in the specification, but

rather on the persistence of the processes that generated the regressand and the particular regressor

series. Hence, when the variables behave as stationary long-memory processes, inference drawn

from the t-ratios or the F joint test can be unreliable. Moreover, Monte Carlo simulations confirm

our asymptotic results and reveal that the phenomenon of spurious regression becomes more

acute as the persistence of the variables rises. Our findings support the conjecture that spurious

effects are attributable to persistence rather than nonstationarity.
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Appendix A

Proof of the theorem

Since we rely on the results of TC’s Lemma 1, we reproduce the relevant ones here as Lemma

A1:

Lemma A1: Let Assumption 1 hold. Then, as T → ∞:

1. ∑
T
t=1 zt = Op

(
T

1
2+dz

)
.

2. ∑
T
t=1 z2

t = Op (T ).

3. ∑
T
t=1 xi,tyt =


Op

(
T

1
2

)
if 0 < dxi +dy <

1
2 ,

Op

(√
T lnT

)
if dxi +dy =

1
2 ,

Op

(
T dxi+dy

)
if 1

2 < dxi +dy < 1,
for i = 1, . . . ,k.

4. ∑
T
t=1 xi,tx j,t =


Op

(
T

1
2

)
if 0 < dxi +dx j <

1
2 ,

Op

(√
T lnT

)
if dxi +dx j =

1
2 ,

Op

(
T dxi+dx j

)
if 1

2 < dxi +dx j < 1,
for i, j = 1, . . . ,k and i 6= j.

Here, z = y, x1, . . . , xk.

To show items 1 and 2 we make use of the OLS estimator formula:

(
X ′X

)
β̂ = X ′Y, (A.1)
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where dim(X) = T × (k+1), dim(Y ) = T ×1, and dim
(

β̂

)
= (k+1)×1.

Expression (A.1) can be alternatively written as



T ∑
T
t=1 x1,t ∑

T
t=1 x2,t . . . ∑

T
t=1 xk,t

∑
T
t=1 x1,t ∑

T
t=1 x2

1,t ∑
T
t=1 x1,tx2,t . . . ∑

T
t=1 x1,txk,t

∑
T
t=1 x2,t ∑

T
t=1 x1,tx2,t ∑

T
t=1 x2

2,t . . . ∑
T
t=1 x2,txk,t

...
...

... . . . ...

∑
T
t=1 xk,t ∑

T
t=1 x1,txk,t ∑

T
t=1 x2,txk,t . . . ∑

T
t=1 x2

k,t





β̂0

β̂1

β̂2

...

β̂k


=



∑
T
t=1 yt

∑
T
t=1 x1,tyt

∑
T
t=1 x2,tyt

...

∑
T
t=1 xk,tyt


. (A.2)

From (A.2), we observe that

β̂0 = T−1

(
T

∑
t=1

yt−
k

∑
n=1

β̂n

T

∑
t=1

xn,t

)
. (A.3)

As for β̂n, for n = 1, . . . ,k, by Cramer’s rule we have that

β̂n =
∆n

∆
, (A.4)

where

∆ =
∣∣X ′X∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T ∑
T
t=1 x1,t ∑

T
t=1 x2,t . . . ∑

T
t=1 xk,t

∑
T
t=1 x1,t ∑

T
t=1 x2

1,t ∑
T
t=1 x1,tx2,t . . . ∑

T
t=1 x1,txk,t

∑
T
t=1 x2,t ∑

T
t=1 x1,tx2,t ∑

T
t=1 x2

2,t . . . ∑
T
t=1 x2,txk,t

...
...

... . . . ...

∑
T
t=1 xk,t ∑

T
t=1 x1,txk,t ∑

T
t=1 x2,txk,t . . . ∑

T
t=1 x2

k,t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A.5)
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and

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T ∑
T
t=1 x1,t . . . ∑

T
t=1 xn−1,t ∑

T
t=1 yt ∑

T
t=1 xn+1,t . . . ∑

T
t=1 xk,t

∑
T
t=1 x1,t ∑

T
t=1 x2

1,t . . . ∑
T
t=1 x1,txn−1,t ∑

T
t=1 x1,tyt ∑

T
t=1 x1,txn+1,t . . . ∑

T
t=1 x1,txk,t

...
...

. . .
...

...
...

...

∑
T
t=1 xn−1,t ∑

T
t=1 x1,txn−1,t . . . ∑

T
t=1 x2

n−1,t ∑
T
t=1 xn−1,tyt ∑

T
t=1 xn−1,txn+1,t . . . ∑

T
t=1 xn−1,txk,t

∑
T
t=1 xn,t ∑

T
t=1 x1,txn,t . . . ∑

T
t=1 xn−1,txn,t ∑

T
t=1 xn,tyt ∑

T
t=1 xn,txn+1,t . . . ∑

T
t=1 xn,txk,t

∑
T
t=1 xn+1,t ∑

T
t=1 x1,txn+1,t . . . ∑

T
t=1 xn−1,txn+1,t ∑

T
t=1 xn+1,tyt ∑

T
t=1 x2

n+1,t . . . ∑
T
t=1 xn+1,txk,t

...
...

...
...

...
. . .

...

∑
T
t=1 xk,t ∑

T
t=1 x1,txk,t . . . ∑

T
t=1 xn−1,txk,t ∑

T
t=1 xk,tyt ∑

T
t=1 xn+1,txk,t . . . ∑

T
t=1 x2

k,t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(A.6)

To find the order in probability of β̂n we shall first determine the order in probability of

∆ and ∆n. To do so, we triangulate the matrices whose determinant is equal to ∆ and ∆n, as

the determinant of any triangular matrix is merely the product of the elements along the main

diagonal. Hence, we seek to find the order in probability of said elements after triangulation. We

find that the order in probability of the elements along the main diagonal after triangulation is the

same as that prior to triangulation for both ∆ and ∆n. Note that the operations required to carry

out triangulation of the matrices, the addition of rows multiplied by a scalar to other rows, leave

the determinant of the matrix unchanged.

Let us first look at (A.5), the denominator in expression (A.4). If we add the first row

multiplied by scalar −∑
T
t=1 xi−1,t

T to the i-th row, for i = 2, . . . ,k+1, we arrive at the following:

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T ∑
T
t=1 x1,t ∑

T
t=1 x2,t . . . ∑

T
t=1 xk,t

0 ∑
T
t=1 x2

1,t −
(∑

T
t=1 x1,t)

2

T ∑
T
t=1 x1,tx2,t − ∑

T
t=1 x1,t ∑

T
t=1 x2,t

T . . . ∑
T
t=1 x1,txk,t − ∑

T
t=1 x1,t ∑

T
t=1 xk,t

T

0 ∑
T
t=1 x1tx2t − ∑

T
t=1 x1t ∑

T
t=1 x2t

T ∑
T
t=1 x2

2t −
(∑

T
t=1 x2t)

2

T . . . ∑
T
t=1 x2txkt − ∑

T
t=1 x2t ∑

T
t=1 xkt

T
...

...
...

. . .
...

0 ∑
T
t=1 x1txkt − ∑

T
t=1 x1t ∑

T
t=1 xkt

T ∑
T
t=1 x2txkt − ∑

T
t=1 x2t ∑

T
t=1 xkt

T . . . ∑
T
t=1 x2

kt −
(∑

T
t=1 xkt)

2

T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

To continue with triangulation of the matrix whose determinant is equal to ∆, we would
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next add the second row multiplied by scalar −T ∑
T
t=1 x1,txi−1,t−∑

T
t=1 x1,t ∑

T
t=1 xi−1,t

T ∑
T
t=1 x2

1,t−(∑
T
t=1 x1,t)

2 to the i-th row, for

i = 3, . . . ,k. This would render all terms in the second column, starting from the third row, 0.

Should we continue this process for a total of k+1 steps analogous to the two described above,1

we would obtain an expression for ∆ as the determinant of an upper triangular matrix.

Let ∆[i, j,m] denote the element of the i-th row and j-th column at step m in the triangulation

process. Then, for m = 1, . . . ,k+1,

∆[i, j,m] =

 ∆[i, j,m−1]− ∆[i,m,m−1]
∆[m,m,m−1]∆[m, j,m−1] if m≤ i−1,

∆[i, j,m−1] if m > i−1,
(A.7)

with ∆[i, j,0] = ∑
T
t=1 xi−1,tx j−1,t (the element of the i-th row and j-th column before the triangu-

lation process), and x0,t = 1 for all t.

From (A.7) we deduce that

∆[i, j,m] =
T

∑
t=1

xi−1,tx j−1,t−
min{m,i−1}

∑
r=1

∆[i,r,r−1]∆[r, j,r−1]
∆[r,r,r−1]

. (A.8)

More specifically, after triangulation,

∆[i, j,k+1] =

 ∑
T
t=1 xi−1,tx j−1,t−∑

i−1
r=1

∆[i,r,r−1]∆[r, j,r−1]
∆[r,r,r−1] if j ≥ i,

0 if j < i.
(A.9)

At every step in the the triangulation process and, consequently, after triangulation of the

matrix whose determinant ∆ is equal to, the elements along the main diagonal are Op (T ) as

T → ∞:

Lemma A2: Let Assumption 1 hold. Then, as T → ∞, for a = 1, . . . ,k+1 and all m:

∆[a,a,m] = Op (T ) .

1At each step m, the elements of the m-th column from the (m+1)-th row onwards become 0.
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Proof: Note from Lemma A1 that prior to triangulation the elements along the main diagonal

are Op (T ). As triangulation consists solely in the addition of other terms to the original terms, it

follows that after triangulation (i.e., once we are left with an upper triangular matrix), all elements

of the main diagonal must be an order in probability greater than or equal to Op (T ). If all terms

added throughout the triangulation process are an order in probability lower than or equal to

Op (T ), the element will remain Op (T ) after triangulation. If, on the other hand, any of the terms

added is an order in probability strictly greater than Op (T ), then after triangulation the element

will too be an order in probability strictly greater than Op (T ). Note further from Lemma A1 that,

before triangulation, all terms outside of the main diagonal are an order in probability strictly

lower than Op (T ).

From (A.8) observe that in each term added successively throughout the triangulation process,

−∆[i,r,r−1]∆[r, j,r−1]
∆[r,r,r−1] for r = 1, . . . , i− 1, the terms in the numerator ∆[i,r,r− 1] and ∆[r, j,r− 1]

are always elements from outside the main diagonal,2 whereas the term in the denominator

∆[r,r,r−1] is always an element from the main diagonal.

Then, observe from (A.9) that for the a-th element along the main diagonal to be an

order in probability strictly greater than Op (T ) after triangulation, it it must be the case

that ∆[a,r1,r1−1]∆[r1,a,r1−1]
∆[r1,r1,r1−1] be an order in probability strictly greater than Op (T ) for some r1 ∈

{1, . . . ,a− 1}. Given that ∆[r1,r1,r1− 1] is known to be an order in probability greater than

or equal to Op (T ), a necessary, though not sufficient, condition for this to occur is that either

∆[a,r1,r1−1] or ∆[r1,a,r1−1], both elements from outside the main diagonal distinct from 0, be

an order in probability greater than Op (T ). Likewise, observe from (A.8) that for either of these

terms to be an order in probability greater than Op (T ), a necessary condition, in turn, is that either

∆[a,r2,r2−1], ∆[r2,r1,r2−1], ∆[r1,r2,r2−1] or ∆[r2,a,r2−1] be an order in probability greater

than Op (T ) for some r2 ∈ {1, . . . ,r1− 1}. Note that r2 < r1; this is, the necessary condition

for the elements outside the main diagonal to be an order in probability greater than Op (T ) at

a certain step in the triangulation process is that certain elements, also from outside the main

2In particular, these are always distinct from 0 when added to elements (i, j) for which j ≥ i.
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diagonal, be themselves greater than Op (T ) at a preceding step in the triangulation process.

Should we continue the same argument iteratively, we would eventually arrive at the following:

for any element of the main diagonal (a,a) to be an order in probability strictly greater than

Op (T ) as T → ∞ after triangulation, at least one element from outside the main diagonal (i, j)

such that

(i, j) ∈ {(i,1) | i ∈ {2, . . . ,a}}
⋃
{(1, j) | j ∈ {2, . . . ,a}}

must have originally (i.e., at m = 0) been an order in probability strictly greater than Op (T ). Yet

we know that originally all elements outside the diagonal were strictly less than Op (T ).

We have thus shown that after triangulation all elements of the main diagonal are Op (T ).

Given that the determinant of any triangular matrix is equal to the product of the elements along

the main diagonal, it follows from Lemma A2 that, as T → ∞,

∆ = Op

(
T k+1

)
. (A.10)

We now turn our attention to (A.6), the numerator in expression (A.4). To simplify the

argument put forward, we assume without loss of generality that n = k. As before, we seek to

turn the matrix whose determinant is equal to ∆k into an upper triangular matrix. Note that ∆k

differs from ∆ in that the original elements of the last column are not ∑
T
t=1 xi−1,txk,t but rather

∑
T
t=1 xi−1,tyt for each row i = 1, . . . ,k+1. Note also from Lemma A1 that the last element along

the main diagonal is originally an order in probability strictly lower than Op (T ) as T → ∞. Thus,

the argument outlined previously no longer applies in its entirety.

Proceeding as we did before, we let ∆k[i, j,m] denote the element at the i-th row and j-th

column at step m in the triangulation process of the matrix whose determinant is equal to ∆k.

Then, for m = 1, . . . ,k+1,

∆k[i, j,m] =

 ∆k[i, j,m−1]− ∆k[i,m,m−1]
∆k[m,m,m−1]∆k[m, j,m−1] if m≤ i−1,

∆k[i, j,m−1] if i−1 < m,
(A.11)
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where

∆k[i, j,0] =
T

∑
t=1

xi−1,tz j−1,t ,

and

z j−1 =

 x j−1 if j 6= k+1,

yt if j = k+1.

As before, from (A.11) it follows that

∆k[i, j,m] =
T

∑
t=1

xi−1,tx j−1,t−
min{m,i−1}

∑
r=1

∆k[i,r,r−1]∆k[r, j,r−1]
∆k[r,r,r−1]

. (A.12)

Recall that we seek to find the order in probability of the elements along the main diagonal

after triangulation. In view of the argument sketched previously for ∆, the first k elements of the

main diagonal are always (i.e., at all steps in the triangulation process) Op (T ):

Lemma A3: Let Assumption 1 hold. Then, as T → ∞, for a = 1, . . . ,k and all m:

∆k[a,a,m] = Op (T ) .

Therefore, the only order in probability we require to find is that of the last element of the

main diagonal. As regards this element, we have that once triangulation is complete,

∆[k+1,k+1,k+1] =
T

∑
t=1

xk,tyt−
k

∑
r=1

∆[k+1,r,r−1]∆[r,k+1,r−1]
∆[r,r,r−1]

. (A.13)

Observe from (A.13) that the denominator of the terms added to element (k + 1,k + 1)

throughout the triangulation process is always one of the first k elements of the main diagonal,

which are known to be Op (T ) at all steps. The numerator of the added terms is comprised of

elements from outside the main diagonal distinct from 0 at differing steps in the triangulation
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process. To these elements, in turn, are added terms composed of the product of other two

elements from outside of the main diagonal divided by an element from the main diagonal, as

seen in (A.12). The order in probability of the elements outside of the main diagonal when added

to element (k+1,k+1) is established in the following lemma, in which we posit that all terms

added throughout the triangulation process are an order in probability equal to or lower than that

of the original term, ∑
T
t=1 xi−1,tz j−1,t :

Lemma A4: Let Assumption 1 hold. Then, for all i 6= j:

∆[i, j,min{i−1, j−1}] =


Op(T

1
2 ) for 0 < dxk +dz j−1 <

1
2 ,

Op

[
(T lnT )

1
2

]
for dxk +dz j−1 =

1
2 ,

Op(T
dxk+dz j−1 ) for 1

2 < dxk +dz j−1 < 1.

Proof: The above occurs if and only if at every step in the triangulation process up to step

m = min{i−1, j−1} the term added is an order in probability lower than or equal to the order

in probability of the original term, which we shall prove by induction.

At the first step in the triangulation process, elements (i, j) for which i > 1 and j > 1 are

∆k[i, j,1] =
T

∑
t=1

xi−1,tz j−1,t−
∑

T
t=1 xi−1,t ∑

T
t=1 z j−1,t

T
.

From Lemma A1 is plain to see that the second term, added at step 1 in the triangulation process,

is not an order in probability greater than that of the original term.

At the second step in the triangulation process, elements for which i > 2 and j > 2 are

∆k[i, j,2] = ∆k[i, j,1]−
(
T ∑

T
t=1 x1,txi−1,t −∑

T
t=1 x1,t ∑

T
t=1 xi−1,t

)(
T ∑

T
t=1 x1,tz j−1,t −∑

T
t=1 x1,t ∑

T
t=1 z j−1,t

)
T
[
T ∑

T
t=1 x2

1,t −
(
∑

T
t=1 x1,t

)2
] .

Observe from Lemma A1 that the term added at step 2 takes its highest order in probability when

1
2 < dx1 +dxi and 1

2 < dx1 +dz j , in which case it is Op

(
T 2dx1+dxi+dz j−1

)
. Conversely, the original

term takes its lowest order in probability when dxi−1 + dz j−1 <
1
2 , in which case it is Op

(
T

1
2

)
.

Given that, by assumption, dxi−1 +dz j−1 <
1
2 and dx1 <

1
2 , it is clear that 2dx1 +dxi−1 +dz j−1−1< 1

2 .
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In all other possible cases, either the order in probability of the original term must rise or the

order in probability of the added term must fall. Hence, once again, the term added is not an

order in probability greater than the original term.

At the m-th step we have that, for i > m and j > m,

∆k[i, j,m] = ∆k[i, j,m]− ∆k[i,m,m−1]∆k[m, j,m−1]
∆k[m,m,m−1]

. (A.14)

Suppose now that, for i > m−1 and j > m−1,

∆k[i, j,m−1] =


Op(T

1
2 ) for 0 < dxi−1 +dz j−1 <

1
2 ,

Op

[
(T lnT )

1
2

]
for dxi−1 +dz j−1 =

1
2 ,

Op

(
T dxi−1+dz j−1

)
for 1

2 < dzi−1 +dz j−1 < 1,

(A.15)

This is, the original term is an order in probability greater than or equal to those added

successively throughout the triangulation process up to step m− 1. Then, substituting (A.15)

in (A.14) it can be shown in a similar manner to what we did at the second step that the term

added at the m-th step is an order in probability strictly lower than the order in probability of the

original term in element (i, j).

We have thus shown that, if at the preceding step in the triangulation process, the proposition

holds,3 then the proposition holds at the current step. Additionally, we had already shown that

the proposition holds at the second step. Therefore, we have effectively shown that it holds at

every step.

As for the last element of the main diagonal, which is ∑
T
t=1 xk,tyt prior to triangulation, the

following lemma establishes its order in probability after triangulation:

3The proposition being that the original term is an order in probability equal to or greater than that of the term
added at the step.
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Lemma A5: Let Assumption 1 hold. Then,

∆k[k+1,k+1,k+1] =


Op(T

1
2 ) for 0 < dxk +dy <

1
2 ,

Op

[
(T lnT )

1
2

]
for dxk +dy =

1
2 ,

Op(T dxk+dy) for 1
2 < dxk +dy < 1.

The proof is straightforward substituting the results of Lemmas A3 and A4 in (A.13).

Hence, given that the determinant of any triangular matrix is the product of the elements of

the main diagonal, it follows from Lemmas A3 and A5 that, as T → ∞,

∆n =


Op(T k+ 1

2 ) for 0 < dxn +dy <
1
2 ,

Op

[(
T k+1 lnT

) 1
2

]
for dxn +dy =

1
2 ,

Op(T dxn+dy+k) for 1
2 < dxn +dy < 1.

(A.16)

Substituting results (A.10) and (A.16) in (A.4) concludes the proof of item 1.

As for β̂0, note that now all the terms in eq. (A.3) have known orders in probability. Denote

by n1, n2, and n3 the subsets of {1, . . . ,k} for which dxn +dy <
1
2 , dxn +dy =

1
2 , and 1

2 < dxn +dy,

respectively. Then, using Lemma A1, (A.3) can be asymptotically reduced to

β̂0 = T−1

[
Op

(
T dy+

1
2

)
− ∑

n∈n1

Op

(
T dxn

)
− ∑

n∈n2

Op

(
T dxn (lnT )

1
2

)
− ∑

n∈n3

Op

(
T 2dxn+dy− 1

2

)]
.

Given that dy > 0 and dxn <
1
2 for all n, it is clear that the first term dominates all others, which

concludes the proof of item 2.
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To prove item 3 the following formula is used:

s2 =
1
T

T

∑
t=1

û2
t

=
1
T

T

∑
t=1

(
yt− β̂0− β̂1x1,t− β̂2x2,t− . . .− β̂kxk,t

)2

=
1
T

(
T

∑
t=1

y2
t −2β̂0

T

∑
t=1

yt +T β̂
2
0−2

k

∑
n=1

β̂n

T

∑
t=1

xn,tyt +
k

∑
n=1

β̂
2
n

T

∑
t=1

x2
n,t+

2β̂0

k

∑
n=1

β̂n

T

∑
t=1

xn,t +2
k

∑
n=1

∑
m>n

β̂nβ̂m

T

∑
t=1

xn,txm,t

)
.

Observe from Lemma A1 and items 1 and 2 of the theorem that term ∑
T
t=1 y2

t is Op(T ), in contrast

to all other terms, which are an order in probability strictly lower. Thus, the following is true as

T → ∞:

s2 =
1
T

T

∑
t=1

y2
t

P→ γy(0).

It also follows from the above proof that

T

∑
t=1

û2
t = Op(T ), (A.17)

a result we shall use later.

To show item 4 recall the formula for the estimator of the variance-covariance matrix of the

estimators:

V̂ar
(

β̂

)
= s2 (X ′X)−1

, (A.18)
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from which it follows that

T V̂ar
(

β̂

)(X ′X
T

)
= s2I.

Note that, in the limit, matrix
(

X ′X
T

)
is diagonal since all elements along the main diagonal of

X ′X are Op(T ) and all elements outside of the main diagonal are an order in probability strictly

lower (Lemma A1). Further, from (A.18) we have that

T V̂ar
(

β̂

)
= s2

(
X ′X
T

)−1

.

Given that the inverse of a diagonal matrix is also diagonal itself, it must be the case that matrix

TV̂ar
(

β̂

)
is asymptotically diagonal as well. Hence, it is true that, in the limit,

diag
[
T V̂ar

(
β̂

)]
•diag

(
X ′X
T

)
= diag

{
s2I
}
,

where “•” denotes element-by-element multiplication. In other words,


T



s2
β̂0

s2
β̂1
...

s2
β̂k




•


1
T



T

∑
T
t=1 x2

1t
...

∑
T
t=1 x2

kt




=



s2

s2

...

s2


,

which, using item 3 of the theorem, becomes



s2
β̂0

s2
β̂1
...

s2
β̂k


•



T

T γx1(0)
...

T γxk(0)


=



γy(0)

γy(0)
...

γy(0)


.
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It follows that

T s2
β̂0

P→ γy(0),

and

T s2
β̂n

P→
γy(0)
γxn(0)

, for n = 1, . . . ,k,

which concludes the proof of item 4.

Proof of items 5 and 6 is straightforward using the results of items (1-4) and the formula

tβn =
β̂n
s

β̂n
for n = 0,1, . . . ,k.

We prove item 7 using the following formula:

R2 =
∑

T
t=1 (yt− y)2−∑

T
t=1 û2

t

∑
T
t=1 (yt− y)2 . (A.19)

Using (A.3), the numerator of (A.19) can be reduced to the following in the limit:

T

∑
t=1

(yt− y)2−
T

∑
t=1

û2
t =

1
T

(
k

∑
n=1

β̂n

T

∑
t=1

xn,t

)2

+2
k

∑
n=1

β̂n

T

∑
t=1

xn,tyt−
k

∑
n=1

β̂
2
n

T

∑
t=1

x2
n,t−

2
1
T

T

∑
t=1

yt

k

∑
n=1

β̂n

T

∑
t=1

xn,t−2
k

∑
n=1

∑
m>n

β̂nβ̂m

T

∑
t=1

xn,txm,t . (A.20)

From (A.20) and Lemma A1, it follows that, as T → ∞,

T

∑
t=1

(yt− y)2−
T

∑
t=1

û2
t =


Op(1) for dx +dy <

1
2 ,

Op (lnT ) for dx +dy =
1
2 ,

Op(T 2dx+2dy−1) for dx +dy >
1
2 ,

(A.21)

where dx = max{dx1,dx2, . . . ,dxk}.

As for the denominator in (A.19), it can shown rather simply using the results of Lemma A1
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that

T

∑
t=1

(yt− y)2 = Op(T ). (A.22)

Substituting (A.22) and (A.21) in (A.19) concludes the proof of item 7.

To show item 8 recall first the formula for the Wald F statistic associated to the joint

significance test:

F =
[∑T

t=1 (yt−y)2−∑
T
t=1 û2

t ]/k

∑
T
t=1 û2

t/[T−(k+1)]

=
[T − (k+1)]R2

k ∑
T
t=1 û2

t/∑
T
t=1 (yt−y)2

. (A.23)

Substituting (A.17) and (A.22) along with item 7 in (A.23) concludes the proof of item 8.

Proof of item 9 comes from the fact that

DW =
∑

T
t=2 (ût− ût−1)

2

∑
T
t=1 û2

t

=
∑

T
t=2 û2

t +∑
T
t=2 û2

t−1−2∑
T
t=2 ût ût−1

∑
T
t=1 û2

t
.

Adding expression û2
1+û2

T
∑

T
t=1 û2

t
, which is negligible as T → ∞, we obtain

DW ≈ 2−2
∑

T
t=2 ût ût−1

∑
T
t=1 û2

t
. (A.24)

We have that

1
T

T

∑
t=2

ût ût−1 =
1
T

[
T

∑
t=2

ytyt−1− β̂0

T

∑
t=2

yt− β̂0

T

∑
t=2

yt−1 +(T −1)β̂2
0−

k

∑
n=1

β̂n

T

∑
t=2

xn,tyt−1−

k

∑
n=1

β̂n

T

∑
t=2

xn,t−1yt +
k

∑
n=1

β̂
2
n

T

∑
t=2

xn,txn,t−1 + β̂0

k

∑
n=1

β̂n

T

∑
t=2

xn,t + β̂0

k

∑
n=1

β̂n

T

∑
t=2

xn,t−1+

k

∑
n=1

∑
m>n

β̂nβ̂m

T

∑
t=2

xn,txm,t−1 +
k

∑
n=1

∑
m>n

β̂nβ̂m

T

∑
t=2

xn,t−1xm,t

]
.
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Using Lemma A1 and items 1 and 2 of the theorem, we discard terms inside the brack-

ets known to be op (T ). Further, given that the underlying processes are independent of one

another by Assumption 1, expressions 1
T ∑

T
t=2 xn,tyt−1, 1

T ∑
T
t=2 xn,t−1yt , 1

T ∑
T
t=2 xn,txm,t−1, and

1
T ∑

T
t=2 xn,t−1xm,t all converge in probability to 0. The only remaining term is ∑

T
t=2 ytyt−1. There-

fore,

1
T

T

∑
t=2

ût ût−1
P→ γy(1). (A.25)

Substituting (A.25) and item 3 of the theorem in (A.24) we find

DW → 2−2ρy(1). (A.26)

Substituting (2.1) in (A.26) concludes the proof of item 9.
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Table B.1: Rejection rate (RR) of t-statistics, Average Value (AV) of the DW , RR of the F joint
test, and AV of the R2, within an OLS-estimated regression: equal value of d for each series.

T Spec. βi

d
1/5 1/4 3/10

RRt* DW R2 RRF ** RRt* DW R2 RRF ** RRt* DW R2 RRF **

T
=1

00

1 β1 0.0680 1.6030 0.0221 0.0650 0.0880 1.4959 0.0253 0.0980 0.1200 1.4003 0.0290 0.1260
β2 0.0480 0.0680 0.1060

2
β1 0.0670

1.6153 0.0336 0.0690
0.0860

1.5114 0.0381 0.1070
0.1080

1.4196 0.0428 0.1390β2 0.0490 0.0710 0.0990
β3 0.0680 0.0930 0.0990

3

β1 0.0650

1.6259 0.0448 0.0760

0.0800

1.5270 0.0513 0.1110

0.1110

1.4408 0.0574 0.1610β2 0.0500 0.0750 0.1000
β3 0.0680 0.0860 0.0970
β4 0.0720 0.0900 0.1160

T
=5

00

1 β1 0.0940 1.5341 0.0052 0.0960 0.1390 1.3926 0.0070 0.1890 0.1930 1.2519 0.0092 0.2690
β2 0.0730 0.1550 0.1870

2
β1 0.0940

1.5372 0.0076 0.1040
0.1400

1.3976 0.0102 0.2220
0.1890

1.2604 0.0141 0.3450β2 0.0690 0.1540 0.1830
β3 0.0790 0.1200 0.2060

3

β1 0.0950

1.5405 0.0102 0.1220

0.1320

1.4028 0.0135 0.2440

0.1860

1.2680 0.0185 0.4030β2 0.0690 0.1500 0.1870
β3 0.0830 0.1160 0.1980
β4 0.0810 0.1250 0.1850

T
=1

,0
00

1 β1 0.0840 1.5214 0.0025 0.0870 0.1120 1.3707 0.0034 0.1650 0.2380 1.2127 0.0052 0.3180
β2 0.0750 0.1410 0.2230

2
β1 0.0840

1.5231 0.0038 0.1050
0.1170

1.3738 0.0054 0.2340
0.2400

1.2172 0.0076 0.3910β2 0.0760 0.1400 0.2200
β3 0.0840 0.1550 0.2190

3

β1 0.0860

1.5248 0.0052 0.1200

0.1160

1.3767 0.0071 0.2600

0.2310

1.2213 0.0100 0.4260β2 0.0750 0.1450 0.2200
β3 0.0860 0.1550 0.2190
β4 0.1050 0.1420 0.2140

T
=2

,0
00

1 β1 0.0910 1.5117 0.0014 0.1290 0.1400 1.3621 0.0017 0.1780 0.2130 1.1980 0.0027 0.3290
β2 0.1040 0.1440 0.2400

2
β1 0.0930

1.5126 0.0021 0.1450
0.1410

1.3637 0.0027 0.2270
0.2120

1.2007 0.0042 0.4140β2 0.1050 0.1420 0.2390
β3 0.1000 0.1430 0.2470

3

β1 0.0940

1.5135 0.0028 0.1640

0.1390

1.3652 0.0036 0.2470

0.2120

1.2030 0.0055 0.4810β2 0.1040 0.1400 0.2390
β3 0.1000 0.1430 0.2520
β4 0.0980 0.1350 0.2340

Here, *,**.- RRt and RRF account for rejection rate of the t-ratio and the F tests, respectively.
The parameter 0 < d < 1/2 is the same for all the series. The nominal size of all tests is 5%. The
number of replications is 10,000.
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Table B.2: Rejection rate (RR) of t-statistics, Average Value (AV) of the DW , RR of the F joint
test, and AV of the R2, within an OLS-estimated regression: equal value of d for each series.

T Spec. βi

d
7/20 2/5 9/20

RRt* DW R2 RRF ** RRt* DW R2 RRF ** RRt* DW R2 RRF **

T
=1

00

1 β1 0.1450
1.2760 0.0354 0.1810

0.1990
1.1713 0.0460 0.2880

0.2540
1.0580 0.0566 0.3470

β2 0.1440 0.2140 0.2450

2
β1 0.1380

1.3022 0.0525 0.2180
0.1980

1.2055 0.0662 0.3120
0.2370

1.0970 0.0806 0.4380β2 0.1360 0.2070 0.2220
β3 0.1350 0.1860 0.2330

3

β1 0.1380

1.3293 0.0697 0.2490

0.1690

1.2397 0.0866 0.3690

0.2400

1.1346 0.1049 0.4850
β2 0.1280 0.1960 0.2200
β3 0.1310 0.1790 0.2150
β4 0.1410 0.1880 0.2260

T
=5

00

1 β1 0.2820
1.0936 0.0135 0.4190

0.3960
0.9418 0.0214 0.5610

0.4900
0.7948 0.0318 0.6710

β2 0.3010 0.3690 0.4810

2
β1 0.2740

1.1051 0.0201 0.5130
0.3910

0.9575 0.0313 0.6880
0.4680

0.8135 0.0449 0.7960β2 0.2930 0.3650 0.4700
β3 0.2900 0.3740 0.4560

3

β1 0.2700

1.1160 0.0263 0.5810

0.3770

0.9729 0.0409 0.7520

0.4570

0.8341 0.0587 0.8550
β2 0.2860 0.3650 0.4690
β3 0.2810 0.3750 0.4470
β4 0.2590 0.3720 0.4450

T
=1

,0
00

1 β1 0.3120
1.0556 0.0077 0.4710

0.4500
0.8919 0.0124 0.6100

0.5250
0.7278 0.0189 0.7370

β2 0.3250 0.4120 0.5270

2
β1 0.3090

1.0622 0.0115 0.5550
0.4480

0.9004 0.0179 0.7250
0.5120

0.7412 0.0289 0.8560β2 0.3250 0.4030 0.5100
β3 0.3110 0.3950 0.5510

3

β1 0.3120

1.0689 0.0153 0.6500

0.4330

0.9102 0.0240 0.8000

0.5050

0.7524 0.0371 0.9160
β2 0.3180 0.4000 0.4970
β3 0.3060 0.3960 0.5400
β4 0.3270 0.4160 0.4980

T
=2

,0
00

1 β1 0.3410
1.0290 0.0043 0.4890

0.4420
0.8608 0.0069 0.6460

0.5780
0.6935 0.0111 0.7800

β2 0.3350 0.4690 0.5830

2
β1 0.3420

1.0327 0.0064 0.5790
0.4450

0.8663 0.0104 0.7790
0.5750

0.7004 0.0162 0.8840β2 0.3260 0.4680 0.5780
β3 0.3240 0.4750 0.5560

3

β1 0.3430

1.0363 0.0085 0.6740

0.4420

0.8712 0.0135 0.8530

0.5770

0.7072 0.0214 0.9340
β2 0.3350 0.4660 0.5660
β3 0.3210 0.4670 0.5570
β4 0.3460 0.4310 0.5510

Here, *,**.- RRt and RRF account for rejection rate of the t-ratio and the F tests, respectively.
The parameter 0 < d < 1/2 is the same for all the series. The nominal size of all tests is 5%. The
number of replications is 10,000.
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Table B.3: Parametric setting of the Monte-Carlo experiments
Case Variable σ2 under different variance d

y 2.00 0.25
x1 1.00 0.20
x2 0.75 0.15
x3 1.25 0.10

dx +dy <
1
2

x4 1.50 0.07
y 2.00 0.25
x1 1.00 0.25
x2 0.75 0.20
x3 1.25 0.15

dx +dy =
1
2

x4 1.50 0.10
y 2.00 0.25
x1 1.00 0.30
x2 0.75 0.20
x3 1.25 0.15

dx +dy >
1
2

x4 1.50 0.10

Table B.4: Rejection rate (RR) of t-statistics, Average Value (AV) of the DW , RR of the F joint
test, and AV of the R2, within a OLS-estimated regression: two regressors and different different
values of d for each series.

Same variance (σ2 = 2) Different variance
Sample size (T) Sample size (T)

DGP 100 500 1,000 2,000 100 500 1,000 2,000

dx +dy <
1
2

RRtβ1
0.0808 0.1000 0.1082 0.1182 0.0810 0.0949 0.1038 0.1159

RRtβ2
0.0722 0.0796 0.0888 0.0924 0.0763 0.0812 0.0899 0.0924

R2 0.0241 0.0053 0.0028 0.0015 0.0245 0.0053 0.0028 0.0015
RRF 0.0828 0.1104 0.1215 0.1239 0.0852 0.1007 0.1167 0.1302
DW 1.4987 1.4001 1.3792 1.3661 1.5012 1.4011 1.3795 1.3645

dx +dy =
1
2

RRtβ1
0.0906 0.1189 0.1367 0.1530 0.0890 0.1228 0.1357 0.1525

RRtβ2
0.0805 0.0947 0.1091 0.1161 0.0841 0.1023 0.1070 0.1155

R2 0.0256 0.0060 0.0032 0.0017 0.0256 0.0061 0.0032 0.0017
RRF 0.0927 0.1338 0.1564 0.1799 0.0980 0.1408 0.1580 0.1741
DW 1.4992 1.4030 1.3802 1.3647 1.5024 1.4028 1.3803 1.3659

dx +dy >
1
2

RRtβ1
0.1016 0.1482 0.1731 0.1908 0.0977 0.1447 0.1602 0.1908

RRtβ2
0.0849 0.0977 0.1059 0.1157 0.0771 0.0968 0.1040 0.1163

R2 0.0266 0.0064 0.0036 0.0019 0.0260 0.0064 0.0034 0.0019
RRF 0.1063 0.1561 0.1844 0.2041 0.1009 0.1541 0.1732 0.2070
DW 1.5104 1.4047 1.3809 1.3663 1.5090 1.4014 1.3821 1.3661

Here, RRtβi
and RRF account for rejection rate of the t-ratio and the F tests, respectively. The

nominal size of all tests is 5%. The number of replications is 10,000.
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Table B.5: Rejection rate (RR) of t-statistics, Average Value (AV) of the DW , RR of the F joint
test, and AV of the R2, within a OLS-estimated regression: three regressors and different different
values of d for each series.

Same variance (σ2 = 2) Different variance
Sample size (T) Sample size (T)

DGP 100 500 1,000 2,000 100 500 1000 2,000

dx +dy <
1
2

RRtβ1
0.0798 0.0993 0.1072 0.1113 0.0784 0.0983 0.1119 0.1157

RRtβ2
0.0775 0.0851 0.0876 0.0890 0.0695 0.0863 0.0886 0.0925

RRtβ3
0.0642 0.0706 0.0686 0.0742 0.0683 0.0701 0.0713 0.0760

R2 0.0350 0.0077 0.0039 0.0020 0.0352 0.0077 0.0040 0.0021
RRF 0.0804 0.1074 0.1102 0.1238 0.0809 0.1047 0.1203 0.1289
DW 1.5087 1.4027 1.3793 1.3658 1.5027 1.4043 1.3797 1.3644

dx +dy =
1
2

RRtβ1
0.0936 0.1186 0.1332 0.1464 0.0892 0.1138 0.1292 0.1466

RRtβ2
0.0838 0.0981 0.1092 0.1197 0.0827 0.0977 0.1090 0.1115

RRtβ3
0.0714 0.0820 0.0866 0.0909 0.0703 0.0816 0.0908 0.0923

R2 0.0374 0.0085 0.0045 0.0024 0.0372 0.0084 0.0045 0.0024
RRF 0.0936 0.1381 0.1579 0.1766 0.0982 0.1366 0.1610 0.1719
DW 1.5125 1.4056 1.3823 1.3653 1.5132 1.4061 1.3823 1.3665

dx +dy >
1
2

RRtβ1
0.0984 0.1438 0.1693 0.1879 0.0967 0.1437 0.1646 0.1908

RRtβ2
0.0781 0.0992 0.1059 0.1181 0.0813 0.0974 0.1107 0.1170

RRtβ3
0.0722 0.0794 0.0881 0.0946 0.0731 0.0812 0.0885 0.0927

R2 0.0375 0.0090 0.0049 0.0026 0.0378 0.0089 0.0048 0.0026
RRF 0.1021 0.1582 0.1851 0.2112 0.1014 0.1583 0.1815 0.2108
DW 1.5163 1.4077 1.3839 1.3672 1.5159 1.4078 1.3828 1.3668

Here, RRtβi
and RRF account for rejection rate of the t-ratio and the F tests, respectively. The

nominal size of all tests is 5%. The number of replications is 10,000.
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Table B.6: Rejection rate (RR) of t-statistics, Average Value (AV) of the DW , RR of the F joint
test, and AV of the R2, within a OLS-estimated regression: three regressors and different different
values of d for each series.

Same variance (σ2 = 2) Different variance
Sample size (T) Sample size (T)

DGP 100 500 1,000 2,000 100 500 1,000 2,000

dx +dy <
1
2

RRtβ1
0.0817 0.0968 0.1032 0.1171 0.0780 0.0956 0.1140 0.1155

RRtβ2
0.0701 0.0824 0.0835 0.0931 0.0694 0.0850 0.0889 0.0987

RRtβ3
0.0644 0.0669 0.0703 0.0695 0.0650 0.0672 0.0719 0.0767

RRtβ4
0.0617 0.0633 0.0638 0.0662 0.0576 0.0620 0.0590 0.0627

R2 0.0456 0.0099 0.0050 0.0026 0.0453 0.0098 0.0051 0.0026
RRF 0.0811 0.1023 0.1119 0.1263 0.0738 0.0994 0.1143 0.1270
DW 1.5124 1.4040 1.3811 1.3664 1.5107 1.4060 1.3825 1.3656

dx +dy =
1
2

RRtβ1
0.0867 0.1176 0.1308 0.1439 0.0927 0.1144 0.1353 0.1496

RRtβ2
0.0763 0.0958 0.1049 0.1116 0.0839 0.1013 0.1135 0.1192

RRtβ3
0.0691 0.0805 0.0895 0.0876 0.0721 0.0822 0.0814 0.0879

RRtβ4
0.0646 0.0689 0.0713 0.0753 0.0631 0.0723 0.0698 0.0742

R2 0.0477 0.0107 0.0057 0.0030 0.0484 0.0109 0.0057 0.0030
RRF 0.0895 0.1332 0.1533 0.1685 0.0951 0.1344 0.1574 0.1740
DW 1.5228 1.4073 1.3832 1.3674 1.5207 1.4060 1.3846 1.3666

dx +dy >
1
2

RRtβ1
0.1019 0.1447 0.1630 0.1880 0.0988 0.1456 0.1661 0.1851

RRtβ2
0.0789 0.0990 0.1095 0.1197 0.0774 0.0962 0.1096 0.1138

RRtβ3
0.0687 0.0827 0.0888 0.0860 0.0727 0.0835 0.0880 0.0940

RRtβ4
0.0648 0.0669 0.0696 0.0757 0.0630 0.0677 0.0716 0.0704

R2 0.0491 0.0113 0.0060 0.0032 0.0487 0.0113 0.0060 0.0032
RRF 0.1028 0.1543 0.1709 0.1937 0.0994 0.1510 0.1777 0.1959
DW 1.5247 1.4085 1.3844 1.3685 1.5217 1.4089 1.3857 1.3677

Here, RRtβi
and RRF account for rejection rate of the t-ratio and the F tests, respectively. The

nominal size of all tests is 5%. The number of replications is 10,000.
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