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Abstract. For matrices Ee €' %", G, Pe C"*™ Jc C""™ let

AZE—PGTE ChRn g = 1-¢Tp T e Cnrmx{n+tm
PI-EI" E

Then the characteristic polynomials of J, A and € are related by pi(@pa(z) = px(2).
Bigenvalue estimates for several types of matrices A may be obtained by examining €. We
estimate a) the eigenvalues of Mondriga (and other) mixed-sign matrices, which arise in the
geometry of immobilization as posed by Kuperberg and Papadimitriou, and which motivated
this factorization; &) the cigenvalues of non-negative matrices different from the spectral
radins; ¢} the eigenvalues of matrices with one sign on and another off the main diagonal.
Also, we show a method for shifting the Gerigorin Disks,

Introduction

n this article we prescat scveral matrix thcorems. The first of these, the theorem on

Moundriga matrices, originated in the study of the immobilization of plane and solid
figures in Euclidean space by points on their boundary, as posed by Kuperberg and
Papadimitriou. In this context the theorem provides the tool to prove that if a letrahedron
satisfies a first-order immabilization condition, it also satisfies a second-order immo-
bilization condition [2]. The first proofs obtained involved the study of many cases
{given by the faces of a-dimensional polyhedra). Then we found a characteristic
polynomial factorization which gave the result simply. This factorization in turn yielded
several seemingly unrelated theorems.

1. The Characteristic Polynomial Factorization
Let C**™ represent the set of matrices with n rows and m columns over the field of
complex numbers. Write p,,(z) = det(zI — M) for the characteristic polynomial of any
square matrix M, &, for its spectrum.
1.1. Theorem, Lct G, Pe C*"™ E e C"™", and suppose

A=E-PGl'e C**", (1.1.1)

Forany Je C™*™, let K=J— G™P and

2= J__GTP GT _ K GT e C(n+m)><(ﬂ+m) (112)
PJ -EP E PK—-AP A+PG' '
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Then
PP A(2) = pg(2), (1.1.3)

G4 U O) = Og. (1.1.4)
Thus the cigenvalucs of A arc those of ‘€ minus those of J.

Proof. The following identities may be directly verified:

e (1 GY(1 0 (1 1GH_(1 0y1 G
P E|(-P T|]” (0 A -P Lj|lP E [
Since pyn(z) = pym(z) for any maitrices M, N, we obtain equation 1.1.3.m
Now suppose we are given a matrix A. By suitably choosing G, P, and J (or K), we
may estimate the eigenvalucs of A by estimating thosc of ‘€. The remaining sections
of this note give several such applications to cases of interest.

2. Mondriga Matrices

The matrices naturally appearing in the second order condition for the immobilization
of bodies in space, are the following (see [2]).

2.1. Definition. A Mondriga matrix is a matrix A = (g;) € R"*" whose diagonal entries

are non-negative and the largest entry in each column, and the sum of whose rows in
non-negative, i.e.,
% a,;20, aySay, a;20,

where 1 £i,I1<n .1

Write BR(C) ={z € C :|z - C| < R} for the disk in the complex plane with radius R and
center C,

2.2. Theorem. For a Mondriga matrix A, 6, < B, ,(0) .
Proof. Using the notation of theorem [.1, setm= 1,
P=(,...,D" G=(@y,....a,) E=a;—a;20, T=(trA).

Then— A=E -PGT and
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G'P=J, (PT-EP),=trA-X (ay-a))=Z%a;20,

0 GT

Hence by theorem 1.1 € = {PJ _EP E

J is a non-negative matrix each of whose

diagonal entries is zero, and each of whose rows has sum not exceeding trA. Thus
applying cither the Ger$gorin Disk Theorem or the Frobenius Theorem we obtain

Og¢ C B,,,(0} . Hence
G A, C 0z C B ,(0) so 6, =B, ,(0).m

The extra eigenvalue introduccd by € is trA, which coincides with the positive
cigenvalue given by the Perron-Frobenius theorem, which therefore gives no additional
information about A.

3. Applications to Mixed-Sign Real Matrices

The result on Mondriga Matrices given above may be refined as the corollary of a more
general theorem.

First, we use a general vector of weights p>0. To apply the decomposition of
theorem 1.1, given a matrix A = (¢;) € R"™”", we shall define g > 0 so that

BE=(e)=A+pg’20. (3.1.1)

Thus
g = max{max (- p;'a;),0}>0. (3.1.2)
l1€i<n
Also define the quantities
Y=g'p, e=minle,,...,¢e,),
(3.1.3)

jy=max p;'(Ep); Ze, ky=max p;(Ap);=j,—7

1sisn 1<itn

Observe that E, e, v, j, &, are functions of the weights p which are independent of the
norm | p .

3.1. Theorem. Let A = (a;)) € R" ™" be any matrix. For each p> 0
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[Bkm_e(e) , e <k,

A< 13,, (ko) A B, (e) ek, (.14

(where k;, ¢, ¥ depend on p).

Proof. Chose any j 2 j,. By applying theorem 2.2 with G = g, P = p we see that except

for j, A has the eigenvalues of
. T
=/ T B
/p—Ep E

which is a matrix with non-negative entries except possibly for j —v. Applying the
Ger¥gorin Disk Theorem with weights (1, p) (see [5]) we oblain that the eigenvalues
of € lie on the disks

B,_, (e), i=1,...,n, B,(j=7)

since

n n

P = |j-p Z pey| + 07 z peq = Jj—e;.
i=1 i=1
f=i

Each of the first set of disks is contained in the largest, which has center at e and radius
Jj—e. Hence

o, C N (Bj_e (e) uBY(j—'y)).
jeiy

We have a pair of circunferences for each j, whose union is

B'—e(e) jZ'y+e
B, .(eyUB (j—v)={ oy .
J ! B,(j-7) jsy+e
L,atllz[j:joSjST+e}(emptyif'y+e<jn),andlet12=(max{j0,7+e},oo).Thus,

6, < NB,(I-7) N NB,_, (e}
iel jel,

'Therefore if Y+es<j,
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6y, © NB,_,(e)=B;_,(e)
je,

while if Y+ ¢ 2 j,
Gy € B, (Jo— N Byley Bjn_e(e) < B, (jo—-v) N By(e) m

The following corollary of the theorem 3.1 refines the theorem on Mondriga matrices
presented above.

3.2. Corollary. Let A = (a;) € )B"™" be a matrix satisfying, for some p >0, Ap=0.
If also

pilaySpilay and pilay=20, 1<i,[<n, (3.1.5)
GA c Bt rA(B) M BtrA(O) E)

where § =min p;' (Ap),20.

1=i<n

Proof. Apply theorem 3.1 to —A, using

ko=max pil (-Ap), <0, g=max max|(p'a)0j=pa,,

l=izn lsisn

Y=trA, ¢;,=0, e¢=0.m

4. Application to Non-negative Matrices

For a non-negative matrix A we may obtain from theorem 3.1 the Perron-Frobenius
Theorem estimate. In this casec, for any p>0,g=0 so E=A,y=0,
Jo = ko= max {p,-‘] (Ap);:1<i< n], and e = min{a,;} < k,. From theorem 3.1,

6, € NB,_J{e)=B, (e), wherer=infk,,
p>0 ’ p>0

which is the estimate obtained by applying the Perron-Frobenius theorem (see [5])
to A—el

Let us now obtain an estimate for the remaining eigenvalues.

4.1. Theorem. Suppose that A = (a,;) € R"*” is a non-negative irreductible matrix with
spectral radius r corresponding to a positive right eigenvector p> 0. Define the
maximum vector g = 0 for whichE=(¢;) = A - pg’ = 0, that is,
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g=(g)e R" by g=min pla;20, I=1,...,n

|y

Let j=r-g'p, ¢=min {e“ RN em]. Then the eigenvalues of A other than r lie on
the disk

O‘A\[r] cB, ().

Proof. We have 0 <Ep= Ap-pg'p=/jp implics j>0. Now apply theorem 1.1
scttingm=1,P=—pe C*"*', G=ge C"*'. The theorem implies that except for j the
eigenvalues of A are the eigenvalues of ¢, where

%=/ G'P GY_{(r g
Pi—EP E 0 E

Thus the eigenvalues of A are r and those of E except for a j. Applying the GerSgorin
Disk with weights p to the matrix E, we find that its eigenvalues lie on the disks

|ze C Iz—e,-t-ISp!-_], i=1,...,n,
where p, = p;! %, p,e;=J — ey 2 0. But each of these disks is contained in the largest,
which has center ¢ and radius j — e W
5. Matrices with Non-negative Diagonal, Non-positive Elsewhere
For another application we consider matrices having one sign on the diagonal and the
opposite elsewhere, which is a casc in which ¥ can be calculated and which will yield

a rcsult on M-matrices.

5.1. Theorem. Suppose A = (g,) € R"*" satisfies

a; 20, a;<0 for i#L

[ .

Let r be the spectral radius of the non-negative matrix ol — A, where oL = sup, . ; . ,.@;.
Then A has eigenvalue o — r of multiplicity one with non-negative eigenvector and

G\ {(1-—:‘} C B, _fo—e) N B, a.o(@ < B () N Biia_o(0)

where j and e are the (non-negative) quantities defined in theorem 4.1 for the matrix
ol — A,
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Proof. Using thc notation in theorem 3.1 as applied to —A, for each p >0, g is given
by g, =p; 'a,. Therefore y= g'p=trA. But Ep= (trAl - A) p, so

s=inf max p(E(pp);, = trA—a+inf max p;'( (ol-A)p),
p>0 1s5isn p>0 | €i<n

=trA-0a+r,
Fix p as the non-negative eigenvector of ol = A. Then
Ep=sp, Ap=(trA -s)p.
E = pg' - A is irreductible since A is, so s coincides with the spectral radius given by

the Perron-Frobenius theorem (pre-multiply by the left-cigenvector). Applying theo-
rem 1 with j = 5 shows that except for an s, —A has the eigenvalues of

o (s—ttA gt

o \|s—trA} = op\ls} < B,(0).

Therefore

On the other hand, applying theorem 4 to ol — A we obtain
o \r—ol= (()'M_A\ {r— tx})w trA < B, [(e—o).m

Matrices with non-negative diagonal, non-positive elsewhere, are called M-matrices if
their inverse is non-negative.

5.2. Corollary. In terms of the notation above, if
lo-r u (B}._e (—e) N B, a_g (0)) c Int (B (0)),
where R > 0, then RI — A is an M-matrix.

Proof. This is a consequence of a well-know theorem (see Theorem 2, §15.2 of {7]).m
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6. Shifting the Gersgorin Disks

Suppose that we are given a matrix A for which we know part of the Jordan form. Then
the spectrum of A may be shown to be contained in shifted GerSgorin disks.

6.1. Theorem. Let A € C**", and suppose AP = P where P e T and §
e C"*™is a Jordan block. For any G e C**™, q> 0,

i=1

where p, (G)=g;' Y g leyl, E(G)= (¢, (G))=A+PGT.
=1
t£i

Proof. In theorcm 1.1 letP=%®, T=$+G'P, E=A+PGT.

T
ThenEP = (A + PGT) P=P ($ + G'P) = PI. Hence € = (" S ,500,\ G4 C . Ap-
ply the GerSgorin Disk theorem with weights g .|
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