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11.bstract.FormatricesEE Cnxn,G,Pe Cnxm,JE 0::::mxm,let 

A=E-PGTE e11x11, 'i=(J-GTP GTlE c(n+m)X(n+m) 
PJ-EP E 

Then the characteristic polynomials of J, A and ~ are related by p1(z)pA(z) = M,(z). 
Eigenvalue estimates for several types of matrices A may be obtained by examining lS. We 
estimate a) the eigenvalues ofMondriga(and other) mixed-sign matrices, which arise in the 
geometry of immobilization as posed by Kuperberg and Papadimitriou, and which molivateJ 
this factorization; h) the eigenvalues of non-negative matrices different from the spectral 
radius; c) the eigenvalues of matrices with one sign on and another off the main diagonal. 
Also, we show a method for shifting the GefSgorin Disks. 

Introduction 

In this article we present several matrix theorems. The first of these, the theorem on 
Mondriga matrices, originated in the study of the immobilization of plane and solid 

figures in Euclidean space by points on their boundary, as posed by Kuperberg and 
Papadimitriou. In this context the theorem provides the tool to prove that if a Letrahedron 
satisfies a first-order immobilization condition, it also satisfies a second-order immo
bilization condition [2]. The first proofs obtained involved the study of many cases 
(given by the faces of n-dimensional polyhedra). Then we found a characteristic 
polynomial factorization which gave the result simply. This factorization in tum yielded 
several seemingly unrelated theorems. 

1. The Characteristic Polynomial Factorization 

Let cnxm represent the set of matrices with n rows and m columns over the field of 
complex numbers. Write PM(z) == deL(zl - M) for the characteristic polynomial of any 
square matrix M, crM for its spectrum. 

1.1. Theorem. Let G, PE cnxm, EE cnxn, and suppose 

A==E-PGTE cnxn_ 

For any J E cm)(m, let K=J -GTP and 

(
J-GTP 

',; -
PJ-EP 

GT) ( K 
E - PK-AP 

GT ··JE c<n+m)x(n+m) 
A+PG1 . 

(I.I.I) 

( 1.1.2) 
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Then 

Thus the eigenvalues of A arc those of'& minus those of J. 

Proof. The following identities may be directly verified: 

(I JGT) = (J 0) (I lo A -P 1 P 
GT) 
E . 

Since PMN(z) = PNM(z) for any matrices M, N, we obtain equation 1.1.3.■ 

( 1.1.3) 

(l.1.4) 

Now suppose we are given a matrix A. By suitably choosing G, P, and J (or K), we 
may estimate the eigenvalues of A by estimating those of 'i. The remaining sections 
of this note give several such applications to cases of interest. 

2. Mondriga Matrices 

The matrices naturally appearing in the second order condition for the immobilization 
of bodies in space, are the following (see (21). 

2.1. Definition. A Mondriga matrix is a matrix A = (ail) E !R" x 11 whose diagonal entries 
are non-negative and the largest entry in each column, and the sum of whose rows in 
non-negative, i.e., 

where 1 $ i, l $ n . ■ 

Write BR(C) = jz E C : I z - C I ~ R) for the disk in the complex plane with radius Rand 
center C. 

2.2. Theorem. For a Mondriga matrix A, cr Ac BtrA(O) . 

Proof. Using the notation of theorem 1.1, set m = 1, 

P=(l , ... , l)', G=(a11 , ... ,aM)', 

Then-A= E-PGT and 
E=a11 -a;t~O, J=(trA). 
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Hence by theorem 1.1 'I: = [pJ ~ EP ~TJ is a non-negative matrix each of whose 

diagonal entries is zero, and each of whose rows has sum not exceeding trA. Thus 
applying either the GerSgurin Disk Theorem or the Frohenius Theorem we obtain 
cr<t; c BrrA(O). Hence 

The extra eigenvalue introduced by ';g is trA, which coincides with the positive 
eigenvalue given by the Perron~Frobenius theorem, which therefore gives no additional 
information about A 

3. Applications to Mixed-Sign Real Matrices 

The result on Mondriga Matrices given above may be refined as the corollary of a more 
general theorem. 

First, we use a general vector of weights p > 0. To apply the decomposition of 
theorem 1.1, given a matrix A = (ail) E IR.11 x ", we shall define g ~ 0 so that 

E=(e11)=A+pg'?.O. (3.1.1) 

Thus 

g1 = max (max (-p,1a;i), 0)?. 0. (3.1.2) 
1 :;;i:;;11 

Also define the quantities 

(3.1.3) 

j 0 =max p/1(Ep)1 ~e, k0 :::;max p/1(Ap);:::;)0 -y 
I :;;i'fn I ~1~n 

Observe that E, e, y,)0, k0, are functions of the weights p which are independent of the 
norm I Pl, 

3.1. Theorem. Let A= (au) E IR.11 
x 

II be any matrix. For each p > O 
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(3.1.4) 

(where k0, e, ydepend on p). 

Proof. Chose any j ;?:j0 • By applying theorem 2.2 with G = g, P = pwe see that except 
for j, A has the eigenvalues of 

'll= 

~

j-y gTJ 
jp-Ep E ' 

which is a matrix with non-negative entries except possibly for j - y. Applying the 
Ger~gorin Disk Theorem with weights (1, p) (see [51) we oblain lhal lhe eigenvalues 
of~ lie on the disks 

since 

B;_,.,(e"), i=l, ... ,n, B1 (j-y) 

" 

l=l 

' 

I= 1 
I at i 

Each of the first set of disks is contained in the largest, which has center ate and radius 
j- e. Hence 

(JA C n(B;_,(e)uB,U-rl)-
J"i:.Jo 

We have a pair of circunferences for eachj, whose union is 

. {B;_, (e) j?. y+ e 
B;_,(e)uB1 (1-Y)= B,(j-y) jc5.y+e 

Let 11 = (j :j0 5j 5 y+ e) (empty ify+ e <j0), and let 12 = ( max (io, y+ e ), =)-Thus, 

Therefore if"(+ e $.j0 

crA c nB,(l-y) 
j E I1 
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c (JBj-e(e)=Bj_,.(e) 
j EI, 0 

while ify+ e ~Jo 

The following corollary of the theorem 3.1 refines the theorem on Mondriga matrices 
presented above. 

3.2. Corollary. Let A= (au) E lh£"x,i be a matrix salisfying, for some p > 0, Ap ~ 0. 
If also 

and l$i,l$n, (3.1.5) 

where O = min p/1 (Ap)i 2: 0 . 
I <; i <; n 

Proof. Apply theorem 3.1 to -A, using 

k0 = max p/1 (-Ap)1 $ 0, g1 = max max {(p/1ail) ,o/ = p1-
1au, 

I <;/Sn I :ii:in 

y=trA, eii=O, e=O.■ 

4. Application to Non•negative Matrices 

For a non•negative matrix A we may obtain from theorem 3.1 the Perron-Frobenius 
Theorem estimate. In this case, for any p> 0, g = 0 so E = A, y= 0, 
J0 = k0 = max {µ--;1 (Ap)1 : 1 $ i $ n), and e = min(aii)::; ko- From theorem 3.1, 

crA c (JBk_/e)=B, ,.(e), wherer=infko, 
p>O o p>O 

which is the estimate obtained by applying the Perron-Frobenius theorem (see [51) 
to A-el. 

Let us now obtain an estimate for the remaining eigenvalues. 

4.1. Theorem. Suppose that A= (au) E lffi" xn is anon-negative irreductible matrix with 
spectral radius r corresponding to a positive right eigenvector p > 0. Define the 
maximum vector g 2>: 0 for which E = (eil) = A - pgT 2>: 0, that is, 
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g = (g1) E IR11 hy g1 = min p"i1 ail~ 0, l = 1 , ... , n. 
I ::; i::; n 

Let j = r- gTp, e = min {e 11 , ••• , enn)· Then the eigenvalues of A other than r lie on 
the disk 

Proof. We have Q:::;Ep.,,,Ap-pgTp=Jp impliesj>O. Now apply theorem 1.1 
setting m = 1, p = - p E cnx 1, G = g E cnx 1. The theorem implies thatexceptforjthe 
eigenvalues of A are the eigenvalues of~. where 

'& ~ (J- GTP 
lPJ-EP ") ( T) G _ r -g 

E O E 

Thus the eigenvalues of A are rand those of E except for aj. Applying the Gel"Sgorin 
Disk with weights p to the matrix E, we find that its eigenvalues lie on the disks 

(zE IC: lz-e;1 lSpi), i=l , ... ,n, 

where P; = pj1 
~lc1-iPt eil = j- e;t ~ 0. But each of these disks is contained in the largest, 

which has center e and radius j- e . ■ 

5. Matrices with Non-negative Diagonal, Non-positive Elsewhere 

For another application we consider matrices having one sign on the diagonal and the 
opposite elsewhere, which is a case in which y can be calculated and which will yield 
a result on M-matrices. 

5.1. Theorem. Suppose A= (ail) E IR11 x n satisfies 

Let r be the spectral radius of the non-negative matrix al - A, where a= sup1 ~i ~na;;· 

Then A ha.1, eigenvalue a - r of multiplicity one with non-negative eigenvector and 

crA \ {a-r} C Bj-e(a-e) n Br+trA-o:(O) C Br(a:) n B,+trA-o:(O) 

where j and e are the (non-negative) quantities defined in theorem 4.1 for the matrix 
al-A. 
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Proof. Using the notation in theorem 3.1 as applied to -A, for each p > 0, g is given 
by gi =pj1a

11
• Therefore"(= gTp= trA. But Ep= (trAI-A) p, so 

s = inf max pj1{R(p)p); = tr A - a+ inf max p-;1( (a.I- A)p)i 
p>O I :.i:.n p>O I :5i:5n 

=trA-a+r, 

Fix pas the non-negative eigenvector of a.I= A. Then 

Ep = sp, Ap = (tr A - s)p. 

E = pgT - A is irreductible since A is, sos coincides with the spectral radius given by 
the Perron-Frobenius theorem (pre-multiply by the left-eigenvector). Applying theo
rem 1 withj = s shows that except for ans, -A has the eigenvalues of 

Therefore 

"-A I is- tr A) = crE\ is) c B_, (0). 

On the other hand, applying theorem 4 to a.I - A we obtain 

cr_A\jr-a)=("ai-Alir-o:))-trA c B1_,(e-o:) . ■ 

Matrices with non-negative diagonal, non-positive elsewhere, are called M-matrices if 
their inverse is non-negative. 

5.2. Corollary. In terms of the notation above, if 

(o:-r) U (B1_,(o:-e) ri B,+uA-a(O)) c lnt(BR(O)), 

where R > 0, then RI - A is an M-matrix. 

Proof. This is a consequence of a well-know theorem (see Theorem 2, § 15.2 of [71).■ 
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6. Shifting the Gerigorin Disks 

Suppose that we are given a matrix A for which we know part of the Jordan form. Then 
the spectrum of A may be shown to he contained in shifted GerSgorin disks. 

6.1. Theorem. Let A E en x n, and suppose ArP = ~ Si where ~ E en x m and .<J, 

E cmxm is a Jordan hlock. Porany GE C'1 xm, q>O, 

" 
crA\cr,9, c u BP1(G/eii(G)) 

i=I 

" 
where p, (G) = q,1 L, q, le,,I, E (G) = (e,, (G)) =A+ PGT. 

1=1 

17' j 

Proof, In theorem I.I let P = \l.P, J =J + GTP, E =A+ PGT. 

Then EP = (A+PGT) P =P (:J + GTP) = PJ.Hence'li = (J ~T),socrA\ cr9 s;; "e· Ap-
ply the GerSgorin Disk theorem with weights q .■ O 
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