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AbsJract. We treat for n-d1mensional bodies the immnhili1ation problem introduced by 
Kupcrberg and l:'apadimitriou, giving the a::rocth, fim and second order comlilion,; for 
fixing, as well as a geometric charactcri7.ition of the first order condition. We show the 
equivalence of the geumctrical and mechanical conditions of fixing. We show that generi
cally, C1 hudies may be fixed by n + 1 points. Abo, there is a C1 1 neighbourhood of S' in 
which a body not admitting threa.ls (:-els nf trapping points which may slitk: along the 
surface) may be fixed by n + I point,., We show that u star-shapeJ body trapped hy a Af!t P 
either may be fixc<l by aser similar to P, or admits a thread generated by P. 

Introductwn 

Immobilization problems where introduced by W. Kuperberg [K] and Papadimitriou 
[MNP!]. They were motivated hy grasping rrohlcms in robotics [MNPl. 2]. Interest 

then developed jn the purely geometrical aspect of the problem. Focusing on smooth 
convex curves, in [BMU], geometrical conditions were obtained for the first and second 
order conditions of immobilization for plane figures, and it was proved that analytic 
convex figures other than the disk may be fixed by three point-.. In [BFMMJ, focusing 
ini,tead on tetrahedra. the first order necessary c-0ndition was shown to imply the second 
order sufficient condition in the three dimensional case, In l_'.M], the the-0rem on 
Mondriga matrices necessary for this result was generalized ton dimensions. Also, the 
Kuperbergconjecture was proved in the two dimensional case: every C2 strictly convex 
figure may be fixed by three points satisfying the second order condition unless it is 
the disk. 

Here, we are interested in the problem from the a-dimensional perspective. We 
give a geometrical interpretation of the first order condition, and give the ::;econd order 
condition in the C2 case. We show the equivalence of the geometrical and mechanic-al 
condi!Jons of fixing, Vie show a result relating trapping to fixing. and also show that 
C1

• 
1 bodies in the neighbourhood of the sphere may be fixed by n + 1 points unless 

they admit a thread (analogous to the thread of a screw). 

2. Definition., 

Let us make precise the conceptt: of "irmnobilization .. and "trapping", We follow 
lhe notation found in [BFMM]. Let ~ be the Lie Group of orientation preserving 
isometrics of Euclidean space :hr. Given any two sets.X, YE R0 define the motions of 
XinYtohe 

'<i (X, Y) ~igE '<i I g(X) c Yj. 

Throughout this articJe, Jet Kc !R" be a compact body with non-e-mpty interior. Denote 
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by lntK the inlerior of K, and hy OK its "oulside", that is, ()' = ~n \ fot.K, so that 
Kr.CK=oK. 

2.1. Deimition. We say that P immobilizes (or fixes) Kif Pc OK and the identity map 
id E ~ is an isolated point component of '~(P, OK) (with respect to path connected~ 
nes.s). We say thar P traps Kif Pc fJK and the connected component of id E ~ is 
compact.■ 

The exceptional cases to inunobilizalion (such as those posed by spheres or 
screws) are ca:ses in which points which almost fix a body can slide along its surface. 
In these cases we say l( admits a thread. 

2.2. Inflnition. We say that K admits a global (local) thread (on its smfacc) jf lhere 
exists a set Pc (!JK which traps K and which satisfies the properly: for every 
g E ~ (P, fJK) in the connected component of id E ~ (or only in a neighbourhood of 
id), g (P) n iiK,; 4>. We say that P generates a thread.■ 

I! is clear that each g (P) traps K. The idea is that the union of sets g (P) n oK is 
what in simple cases such a5 the surface of a screw we call a thread. 

3. The Zeroeth, First and Second Order Conditions 

Vile are interested in the conditions under which a set of n + 1 points p;;; '.,p0 •. ,,, p11} 

fixes: an n-dimensional body K at differentiable points on the boundary. Let the set of 
outward normals corresponding to these points be N = ~N0, , .. ., N,J The simplest neces
sary condition for fixing, which we refer to as the zeroeth order condition, is that the 
points under consideration fix the body when motions are restricted to translations. 

3.1~ Proposition. A necessary and sufficient condition for the points P to fix a C1 hody 
K up to translatiotts (the zeroeth order condition) is chat any proper subset of N is 
linearly independent and that there exist positive constants a0, ••• , a

11 
> 0 for which the 

set N of normals satisfies~ a1 N1 = 0. 

Proof. Let us denote translations by vectors b. P fixes K up to translations if for every 
b some point P; penetrates the interior of K when tr.tnslated in the direction b: 

(3.1.1) 

This implies that any proper subset of N is linearly independent. Otherwise there exists 
(renumbering) sornc set jN0, ••• , Nn_ 1( contained in a hyperplane, so for some vector 
b, b • N0 :;;;;: ••• = b, N,,,_ 1 ~ 0. 'l11en (rc}Jlacing --b by b if necessary) Nn · b ~ 0, c-0ntra
dicting 3.1.l. i\.lso, 0 must be in the interior of the convex hull of N. Otherwi<;e there 
exists a hyperplane separating N from 0, that is, a vector h such that Ni • b .C 0. 
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Conversely, if for any b '#. 0 3.1.1 is false, then N1 • b ~ 0, Bul lhe independence 
condltion on N implies these quantities cannot all be zero. Thus O =¾,a, N, -b > 0, a 
contradiction.■ 

Whenever we suppose a set of point,; P satisfies the zeroeth order condition we 
shall write n; = a1 N;; L~ ni = 0. The a 1 > 0 are defined up to a constant, but for defini
ten~s we choose 

a1 = (-1 i det( N0 ... Ni . -. N11 ) (3,l.2) 

(the hat means "omit''), with the numbering chosen so N1, •••• N11 has the canonical 
orientation. 

To develop the first and second order conditions for fixing we consider the 
following geometrical construction. Suppose a set of points P fixes a body K up to 
translations, and that in a neighbourhood of the J)(..lints P dK is twice differentiable, so 
that the second fundamental form exists. It turns out that for any rotation, there exist 
corresponding translations and homolhetic scale changes which cause each point of P 
to slide along dK. Then, jf for all rotations the necessary scale change is an increase, 
Pmust fix K. 

We represent the i-econd fundamental form of the surface dK 1,vith nonnal N by 
/l(x) = D, N and also write B (x, y) = Y' Dx N, 

3.2, Proposition. Suppose P = iPg, , , . , p;} fixes a C2 figure K up to trnnslations, and 
I;; n; p,;, 0 on i:JK (this is true for starsltaped K). For any c2 path of orthogonal 
transformations R(t) with R (0) ~ I define the vectors p1 (t), b(t) and the scale factor 
o (I) by 

p,=crR (p?+b), nfp\=O, i=O, ... , n. 

b (0)=0, o (0) = I. 

These are equivalent to the system of o.d.c.'s 

where A = 1( K 1 

and br is obtained by solving 

(3.2,l) 

(3.2.2) 

(3.2.3) 
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(3.2.4) 

The system oJ o,d.e's obtained after substituting <:f and b' in 3.2.2 (using 3, 1.2 for 
the definition of a1 ) has a unique sulution in a neighbourhood of t = O. Jn which 
Pv{I), .... P./l) sat~fy the zeroeth order condition. 

P fixes Kif for every path R(t) a increases arhitrarily close lo t = 0, fort> O and 
I< 0, meaning 

The necessary first order crmdition for this to be the case is 

(3.2.5) 

Given this condition, the sufficient second ortkr condition is 

,:;; a, (!ANj · (AP£) - B1 {p/,p/))> U, (3.2.6) 

where 8
1 
is the second fundamental form at P?, i = 0, ...• n, ln tet111-s; of equations 3.2.2, 

3.2.3 and 3.2.4, we may define 

Q (A.A)=!;;a1 ((A,V,) · (AP,)-B1 {p(,p/) )

Q can be extended to a symmetric bilinear quadratic form. 

(3.2.7) 

Proof. Condition.s 3.2.1 define the images of pf under a path of isometries preceded by 
a translation and follo"ved by the application of a scale factor both defined uniquely 
under the condition that the points remain on the surface. The uniqueness is clear from 
the differential system., which is obtained as follows. Differentiating in 3.2, l 

p/ a:;; cr' R (p? + h) + crR' (p? + b) + crRb'. 

Substituting pr= a-1 R-1 p1 -· b we obtain 3.2.2. Therefore 

so 
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implying 3.2.3 and 3.2.4. While a,. and¾ n;p;remain dHTerent from zero the full o.d.e, 
system for p1, cr, b, ai" a may be <Jbtained as rational express.ions with non-zero 
denominators rio obtain h the inverse matrix of (N1 ,, • N,,) is involved] ens1uing the 
existence and uniqueness of solutions in a neighbourhood of I""" 0. 

It ls not hard to~ for any path of rotations R(t) that a path of isometrics shifting 
the points P? without entering the interior of K exists if and onJy if the -.cale factor 
keeping them oo the surface <loes not increase on both sides of r "":! 0, arbitrarily close-ly. 

The necessary first order conrlitjon is a'(O} = 0 for every path R(t), which is 
equivalent to the condition that~ nfAp; = 0 for every antisymetric matrix A. and 
therefore to 3.25. Given the first order condition, the second order sufficient condi
tion is 

We examine le.rm by term. The first term gives 

The second term gives 

",. '"A ""( '" "')T' ,~ B (p' ' L.\)nf P1 ="4) ai ,-..i+alvi Pi ='""'1iai t ;,P;}, 

The last term is zero because I;; n1 Pt is symmetric and 

Hence the second order sufficient condition is equivalent to 3.2.6. Q may be 
extended to a symmetric bilinear quru:iratlc fom1 because 3 .2.5 is equivalent to the 
symmetry of the matrix ¼ n1 pf. 

For n = 2 it is enough to consider the smooth path of rotations 

RU)=ltc?st-·sint)forwichA."":!R' R i ,,,,(0-1~J-
, smt coM ll 0 

so A'= 0. The sign of I.be derivative {lnof' coincides with the sign of the expression in 
3.2.6, in a neighbourhood oft~ 0,■ 

3.3. Definition. We say that a body K held by a set of n + ! points Pis fixed firmly if 
it satisfies the zeroeth, first, and second order conditions,■ 
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The first order condition 3.2.5 has the following geometric characterization. We 
write < A> for the vector subspace generated by the .set or I ist of vectors A. 

3.4. Theorem. Let Pi, ni, 0 ::;; i $ n be a set of n + 1 points and directions defining lines 
Li, and suppose that the normals satisfy the zeroeth order condition (see 3.1 ). Then 
¾Pi A ni = 0 if and only if each n - 2 dimensional plane which intersects or is parallel 
to n of the lines Li intersects or is parallel to the remaining line. 

Proof. Suppose ,¾p1 Alli= 0. Let Qn - 2 he an - 2 dimensional plane containing linearly 
independent directions v1, ••• , vn_2 and a point q e Qn- 2. Suppose that Li intersects 
Q,,_, . . Th h 

, i ;t: J. en q-pi e <n;, v1, ••• , vn 2> sot at 

(q-p;)An; A V1 A ... A vn-2=0. 

The same equation is obtained if Li is parallel to Qn - 2 since in this case n1 is a 
linear combination ofv1, ... , vn 2. Hence 

" 
(q-p) A1ljA v 1 A ... A vn_ 2 =- L, (q-p;) AniA Vi A ... A Vn_ 2 =0, 

i"F-j 

since L~ n1 = 0 and ~Pi An;= 0. We infer that L; also intersects or is parallel to gz- 2, 

according to n1 A v1 ,., ••• ,., v 11 _ 2 being different or equal to zero. 
We prove the converse for n = 2 and then reduce the general case to this one. For 

n = 2 there exists some point q at which Lo and L1 intersect, since they are not parallel. 
Therefore L2 also goes through q so we have P; = q + a; n1 for i = 0, 1, 2,implying 

For n ~3 express @=¼P; A n1 in terms of the basis n1, ... , n,,. If we had ro;cO, 
renumbering if necessary, n 1 A n2 has a non-zero coefficient so 7t (ro) :;t 0, where 
n : R1 ➔ E2 is the projection along <n3, ••• , nn>. By the linear independence conditions 
on the normals, re (L0), n (L1), re (Lz) satisfy the intersection hypothesis for n = 2, so we 
can conclude that O = ~ n (pi) An (n;) =re(@), which is a contradiction.■ 

In a communication to the author, Professor Elmer Reese points out that an 
alternative interpretation of the first order condition is that the projective coordinates 
of the lines Li are linearly dependent (via the Plucker embedding). 

We say that the lines L1 corresponding to points satisfying the first order condition 
are concurrent for n = 2 and semiconcurrent for n ;?: 3. 

An interesting result is that the geometrical conditions for fixing coincide with the 
mechanical conditions. 
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3.5. Theorem. Suppose for a body Kin IRJ a set of 4 points P satisfies the zeroeth and 
first order conditions. lf forces f: arc applied inwardly along the normals at rhe points 
P. so ~ to add up to zero, these mm.t he proportional io n;, and the resultant torque is 
zem. Suppose further that the mechanical syste.m delivering force,;; Fr, is subjcet to 
motions of P and K, with movements of P restricted to being similar, in such a manner 
that f'; continue to be applied inwardly aJong the normals N,-. Then if the second order 
condition is satisfied, any motion of K must do work against Fr 

Proof. Tfthe forees applied are F1 = 0/"(andLii F1 ;;;;;Q, ♦, must be a multiple of a1, sJnce 
N{ satisfy the zeroeth ordet condition, The resultant r?:qu~ is t?erefore a multi?Ie of 
~ Pi An,."" 0. The geometry of the second order cond1t1on 1n1pl1es that any mohon of 
K will necessitate a positive. change of scale of P, which will do work against Fe■ 

4. Some General Theorems for the n-dimensWnal Case 

We first relate the concepts of fixing and trapping. If a star-shaped body is trapped hy 
a closed set P, by diminishing the scale of P and shifting it isometrically we must 
eventually fix K. unless special features exist on the surface of K, whlch we have call;.:d 
threads. 

Let us write D, (r): ~ ··-➔ il.11 for dHations with a scale r £.'-entered at 
x: Dx (r) (y) = r (y-x)+x. Recall that any 0 E ~ may he written as0x =Rx+ hwhere 
R is orthogonal, and b represents a translation, 

4.1. Theorem. Suppose K is star-shaped about some point in its interior, for definiteness 
the origin. so D0 (r)K c K. Suppose a closed set Pc ~ 11 traps K, Then there exists an 
isomctcy ¢ E ~ and a scaling factor r E (0, l] 5uch that either the reduced image 
P';;;; q>(D0 (r)P) of P immoblli1es Kor it.generates a thread on the surface of K, 

Proof. Let r ~ inf is E [O, l] I 3 <I> E 'l : <I> (D0 (O)P) traps K) be the infimum of set of 
scaling factors for which some reduced image of P lies outside K and traps K. Then 
there exist some sequences s, E Lr, 1] tending to r, and Q1 E $, where i E N. for which 
$1 (D0 (s;)P) c OK and traps K, ~, clearly belong to a compact subset of~ and so there 
is a convergent subsequence tending to some IP E ';f: for which P' = $ (D0 (r)P) c e:JK. 
Since OE intK, r > 0. Hence Pis similar ro P. We show P' traps K. Suppose instead 
that there exists a path 0: [O, w)-; •g (P', OJ,.') with8 (0); idforwhichll (t) ➔ =(that 
is, 0 has a large translation component), Since K is star~shape,<l about 0, 
CK C a (D, (r)K), so 

0 (I)·~ (D0 (r)P) c OK c l'i(D0 (r)K'), 

There exist R(I), b(I) for which 0(1) · ,j,x; R(t)x + b(t). Then 
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R(t)rP + b(t) c rK 

which implies 

R(t)P + r-1 b (t) c K . 

Letting X (l)x ~ R(l)x+ r-1b (t), we have a path X: [O, =)-> 'e(P, l'!K) showing that P 
does not trap K. 

Suppose now that id is not an isolated point component of i(Q, f.JK. If for any 
g E W, in this component K (P) n OK= <j>, then a smaller scaling factor than r would 
exist, since Pis closed. hence P generates a thread.■ 

The next theorem proves that one method of fixing bodies, which works generi
cally for C1 bodies K, is to find the largest ball inscrihed in 'iJK. This is the gateway to 
the general theorem of fixing convex bodies in dimension 2, proved in [M]. 

4.2. Theorem. a) Suppose a closed ball contained in a C1 body Kc !Rn touches it only 
on an open semisphere. Then there is a bigger baU contained in K. 

b) Suppose an inscribed closed ball in a C1 hody K contains on its intersection 
with OK a set of n + l poinb P = {Pg, ... , p~} whose corresponding normals N; satisfy 
the zeroeth order condition. Then either P fixes Kor it generates a thread. 

c) C1 compact bodies K with non-empty interiors whose largest inscribed balls B 
have intersections with OK containing n + 1 points P fixing K are C1 dense. 

Proof. a) By hypothesis there exists a direction h such that B n OK c {x : x • h < o}. 
Define on the upper hemisphere jx E OB : x • h ;2; 0) the continuous function 
p(x) = sup Jr: rx E K}. p must attain its minimum Po> 0. Let C be the convex hull of 

!x E B IX . h < o) u (Po XIX E Bj s;; K. 

Since K is convex, Cs;;; K. It is also clear that C contains a hall slightly bigger than B. 
b) We shall show that the P fixes lhe sphere itself except for rotations; hence K is 

trapped a fortiori. Since the sphere is invariant under rotations, the only relevanl paths 
of isometries with one endpoint at the identity are translations. But in any translation 
direction h, since the normals satisfy the zerocth order condition, at least some 
h · N1 > 0, implying Pi (t) penetrates the sphere. It follows that if P does not generate a 
thread on K, it fixes K, because if a path of rotations R (t) defines a scaling path cr (t) 
which cannot decrea,;e (since then some path p

1 
enters the ball, which is a subset of K) 

or remain constant (this would define a thread) it must increase arbitrarily closely to 
t = 0 on either side. 

c) Any compact body K with non-empty interior ha.,;,; a largest inscribed balJ B. 
The intersection I= OB l'1 OK may not be contained in an open semisphere by (a). If it 
is contained in a closed semi.sphere, n + 1 points on H, each arbitrarily close to points 
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in !, may be selected so that they are not all contained in a scmfaphere, Then K may be 
modified to a C1 body arbitrarily close to the original for which Bis the large!;t inscribed 
ball artd for which l does not generate a thread. The n + 1 point:, satisfy the zeroeth 
order condition by construction and so by (b) fix K.■ 

The next theorem shows a general condition under which, given a particular 
simplex S, there exists a set of n + 1 points P forming a simplex similar to S (with the 
same orientati(m) which fix K, unless K admits a thread gener&ted by P. 

4.3. Theorem. Let K be a C1 body and S ._._., jso, ...• s11} c R" be a se:t of points defining 
a simplex. Suppose that for every set of points P = \po, "., p11 / c dK defining an 
inscribed simplex similar to S and with the same orientation, the Corresponding set of 
normals N !.atisfieA the 7.,eroeth order condition. Then at least one of these sets P fixes 
K, unless K admits a thread generated by P. 

Proof. For each rotation, there exist<; a largest scaling factor <J for which for son1e 
orientation preserving isometry ¢;, a$ (S) c K. Therefore the set of inscribed ,;implexes 
similar to Sand with the same orientation is non-empty. Take the infimum 

o= inf(o>O I 3 <I> e": <>$ (S) c: aKj. 

/\gain taking a convergent subsequence we have some corresponding (j) € ~ for which 
P = oq, (S) c aK. Now for every sliding of P (sec. §3.2) generated by a path of rotations 
R(t), the scaling factor cr(t) ha,; a global minimum at t = 0. Tf for some path cr is constant 
on some interval containing 0, K admits a thread generated by P. Othenvise for every 
palh R(t) a increases arbitrarily close to 1 ~ 0 so P fixes K.■ 

4..4. Theorem. Lel S == js0, , , .• sn] c R11 be a set of points de.fining a simplex for which, 
for every ::.et of points P = jpo, ,,,, p,.j c ,fl defining a simplex similar to Sand with the 
same orientation. inscribed on the sPhere, the oorrespomling sel of normals N satisfies 
the zeroeth order condition. There is a C1

•
1 neighbourhood of bodies close to the sphere 

S" for which S has the same property. 

Proof~ Since, the sphere is convex, there 1!J a ct.t neighbourhood of bodies close to it 
which are convex and which form a simply connected domain in lt«:11 + 1• Thus we restrict 
our attention to such bodies. for which there exists a cu concave function !() on Rr. + 1 

for which dK= q,··1 (I), <I> (0) = 0, V <I> (0) =O. One way of finding such a function is to 
consider the first eigenfunction t1 of the Laplacian with Dirichlet boundary conditions, 
which is convex [C, Chp I, §5 remark 3 ] and has a unique maximum at some interior 
point, which we rescale to 1. Fixing the origin at the maximum we can take.$;;;; 1 ... '(}, 
and extend it to a cu concave function on !Rn+ 1 satisfying the desire.d conditions. 
Define 

ljl (t) = t<J> +, 1 - t) Ix I 2 IE [0, I] 

9 



Mayer I Immobilization of n-dimensional Geometrical FiP,ures 

Then IJ.l(l)(0)=0, V1J.1(1)(0)=0. We deform K to the sphere by letting 
aK (t) = \jf (tf1 (1). Suppose now that we are given some points p = {Pb, ... 'P!} forming 
a simplex inscribed in dK. We wish to find a path of inscribed homothetic simplexes 
given by Pi (t) with A (1) = pf, P; (0) E S'. Thus we require 

p;(t) = a (t) (p: + b (t) ) 

which implies 

p/ = cr' cr i (p1 + b') 

We have 

0 = :, 1J.1 (t, p, (t) ) = IJ.I, + V\Jf · p',, 

so 

Hence 

_, 

a'=- a ,ta, (IJI, IV IJ.I r1
) (p,) [i, n, • p,J 

and b~ = F ((\jf1 I V\jf 1-1) (pi), P;, N,, cr) (which includes matrix inverses of matrices of 
vectors N;). Thus the differential equation is well defined, and ha<.; local solutions since 
V'V is Lipchi~ because 'Vis C1

•
1

• Observe that 

I V'lf 12 =It '1$ + 2(1 - t)x 12 = i2 I V$ 12 + 4t (I - t) <V $, x'.> + 4 (I - 1)
2 Ix 12 

is positive on aK (t) since each of its terms is positive at every point except for the 
origin, which is never on dK (t). 

If we solve with (j) =Ix 12, the solution exists on the interval [O, 1], given by 
cr (t) = 1, b(t) = 0. This solution has the property a1 = constants > 0. By the continuity 
of solutions of uniformly Lipchitz differential equations, and the compactness of the 
set of inscribed. simplexes P, there is a C1

•
1 neighbourhood of furn;tions $ close to 

Ix 12 for which solutions satisfying ar > 0 aJso exist on the whole interval, for given P. 
But these functions$ define a c1

.1 neighbourhood of bodies of the sphere, each 
having the desired property.■ 
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4.5. Corollary. For any simplex S with the property that any oriented similar copy 
inscribed on the sphere has normals satisfying the zeroeth order condition (this holds 
for a neighbourhood of equilateral simplex), there is a C1

•
1 neighbourhood of bodies K 

close to the sphere S11
, any of whose elements is either fixed hy an oriented similar copy 

P of S, or admits a thread generated by P,■ 

It is clear that in the general fixing problem, the boundary for slidings formed by 
the zeroeth order condition plays an important role. 
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