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Abstract

This thesis provides an analytical study of the limiting
distribution of the typical statistic employed in the central
limit theorem, albeit with a minor twist. An asymptotic
theory is developed for the aforementioned statistic involv-
ing data generated from stationary and trend stationary
processes with level and trend breaks. Four case-specific
theorems are proved and Monte Carlo simulation is utilized
in order to both confirm empirically that these results hold
and to provide evidence of how variations in the parameter-
ization of the underlying data generating processes affect
the normality of the central limit theorem statistic. Fi-
nally, two possible applications of these theoretical results,
pertaining to a context of ordinary least squares linear re-
gression, are presented and discussed in detail. These ap-
plications exploit intermediate results obtained in the pro-
cess of proving the main theorems and the contrapositives
of the theorem statements so as to bring about derivations
of the limiting distribution of regression coefficients and a
potential independent variable exogeneity test statistic.

Keywords: time series, stationary, trend stationary, asymp-
totic theory, central limit theorem, limiting distribution
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Introduction

Correlation does not imply causation, or so goes the
now ubiquitous saying. Indeed, much can be said about
statistical relationships between two seemingly unrelated
variables which not only turn out to be specious but, in
many instances, also whimsical. Such is the case with the
apparent dependence between variables such as the num-
ber of letters in the winning word of the Scripps National
Spelling Bee and the number of people killed by venomous
spiders. Examples like these abound, some less deceptive
and beguiling than others, and can be found in works such
as Spurious Correlations (Vigen, 2015). This phenomenon
is undeniably pervasive and, as such, has been studied in
myriad ways.

The recent history of research into spurious regressions
in econometrics can be traced back to work regarding spu-
rious models where sufficient care is not taken over the au-
tocorrelation structure of the errors and its formulation in
the regression equation (Box and Newbold, 1971). Earlier
simulation findings that relate integrated random processes
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shed light on the ease with which spurious relations can
arise in regressions involving two non stationary processes
(Granger and Newbold, 1974). More concretely, Granger
and Newbold studied how simple linear regressions between
two independent AR(1) processes resulted in statistically
significant coefficients, large R2’s and small Durbin-Watson
statistics more often than should be expected by chance.
Twelve years later, Phillips used Granger and Newbold’s
framework as the basis for the development of asymptotic
theory for regression coefficients and for conventional sig-
nificance tests in the context of ordinary least squares. He
showed that the usual t and F test statistics do not possess
limiting distributions and diverge as the sample size tends
to infinity (Phillips, 1986). Evidently, this translates into
the rejection of the null hypothesis of no relation between
the explanatory and dependent variable more often than
what would be expected in a linear regression relating two
independent stochastic processes. Phillips concludes that
the nonstationarity of these time series is the underlying
cause of spurious regression.

Finally, Tsay and Chung extend the theoretical anal-
ysis of spurious regressions from the I(1) processes to the
long memory fractionally integrated processes. They find
that regressions between two long memory fractionally in-
tegrated processes, whether they’re stationary or not, re-
sult in divergent t ratios and spurious effects (Tsay and
Chung, 2000). These two authors conclude that the cause
of spurious effects is not the nonstationarity of the pro-
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cesses but the long memory. It’s from the spirit of the
work done by these aforementioned authors that the fol-
lowing work gets its motivation.

Despite the fact that the fundamental purpose of the
results that will be proved here is purely theoretical, they
are based on a similar result proved by my thesis advisor
which was later applied in a paper on financial economet-
rics (Osterrieder et al., 2018). Notwithstanding, I’d like
to emphasize that the results presented here were derived
with no particular application in mind. In The VIX, the
Variance Premium, and Expected Returns, it was proved
that if you multiply a fractionally integrated stochastic pro-
cess by an independent I(0) noise, then the mean of that
product multiplied by the root of the sample size will have
an asymptotically gaussian distribution. That is quite a
strong result and was applied in the context of instrumen-
tal variable regression for the estimation of the risk-return
relation. While this result holds under the assumption of a
fractionally integrated data generating process, it need not
hold when this assumption is loosened. In fact, every par-
ticular assumption about the underlying data generating
process requires case-specific asymptotic theory. Hence,
the objective of this work is to do precisely this for four
other data generating stochastic processes and add our
grain of sand to the ever-growing repertoire of time series
asymptotic theory.
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Chapter 1

Central Limit Theorems

The central limit theorem is a key concept in proba-
bility theory that provides conditions under which the ad-
equately scaled sum of random variables limiting standard
gaussian distribution. This result, together with the law
of large numbers, is fundamental to most of mathematical
and inferential statistics. The statement of the classical
central limit theorem goes as follows:

Theorem (Classical Central Limit Theorem). Let X1, ..., XT

be independent and identically distributed with mean
µ < ∞ and variance σ2 < ∞. Let X̄T = T−1

∑T
t=1Xt.

Then

ZT =

√
T
(
X̄T − µ

)
σ

 Z

where Z ∼ N(0, 1). In other words,

lim
T→∞

P (ZT ≤ z) = Φ(z) =

∫ z

−∞

1√
2π
e−

x2

2 dx
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The previous theorem can be interpreted as estab-
lishing which probability statements which can be made
about about X̄T using the normal distribution (Wasser-
man, 2004). There exist various other versions of the cen-
tral limit theorem for cases in which the assumptions of
independence, identical distribution, and finite moments of
the underlying random variables are not met. For example,
there are central limit theorems specific to each of the four
following conditions: independent identically distributed
observations, independent heterogeneously distributed ob-
servations, dependent identically distributed observations,
and dependent heterogeneously distributed observations.

Analogous too all these versions of the central limit
theorem, but with much stronger assumptions regarding
the data generating process, is Lemma 1 of The VIX, the
Variance Premium, and Expected Returns which goes as
follows:

Lemma. (Osterrieder et al., 2018)
Let at and bt be two independent processes given by
at = φ(L)εt and bt = (1− L)−dηt where φ(L) =

∑∞
t=0 φiL

i

with
∑∞

i=0 i|φi| < ∞, φ(1) 6= 0 and (1 − L)d =
∑∞

i=0 γiL
i

with γi = Γ (i+ d) / (Γ (d) Γ (i+ 1)), 0 ≤ d < 1
2
and

εt ∼ i.i.d.(0, σ2
ε ), ηt ∼ i.i.d.(0, σ2

η). Define zt = atbt. Then

T−
1
2

T∑
t=1

zt/σ̄T  N(0, 1)
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where

σ̄2
T = V ar

(
T−

1
2

T∑
t=1

zt

)
→ σ̄2 as T →∞

As can be seen, whenever the assumptions about the
underlying data generating process change, so does the cen-
tral limit theorem that’s applied within that frame work.
That is, different conditions will apply to different kinds
of economic data. In this work, we derive four additional
versions of the central limit theorem. The statement of all
the central limit theorems that will be considered have the
following form:

Theorem (Generic CLT). Given restrictions on the mo-
ments, dependence, and heterogeneity of a scalar sequence
{zt},

(z̄T − µ) /(σ̄n/
√
T ) =

√
T (z̄n − µ) /σ̄n  N(0, 1),

where µ = E[zt] and σ̄2
T = V ar (z̄T )

This can be summed up as saying that the sample av-
erage, under general conditions, has a limiting standard
gaussian distribution. As has been stated in other works,
there are trade-offs to the restrictions and conditions im-
posed and assumed in these theorems. “Typically, greater
dependence or heterogeneity is allowed at the expense of
imposing more stringent moment requirements” (White,
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2001). In this paper, we define four time series stochas-
tic processes and develop central limit theorems for each
of them, albeit with a small twist as the reader will no-
tice. These four processes can all be used to represent a
vast variety of economic and financial data and potential
applications for these results will be presented in the final
section of this work.

7



Chapter 2

Main Results

Four Central Limit Theorems

We now present the results which comprise the core
of this paper. What follows is a set of four central limit
theorems each one for a different time series stochastic pro-
cesses. The processes that will be considered are: an un-
centered white noise, an uncentered white noise with level
breaks, a trend stationary process, and a trend stationary
process with level and trend breaks. As the reader will
notice, the central limit theorems obtained are not con-
cerning the sample mean of the data generating process,
but instead pertain to the sample mean of the product
between the original stochastic process and a white noise
independent from this data generating process.

The subsequent section to this prelude will be orga-
nized as follows: a definition of each stochastic process xt
and its transformation zt = xtεt followed by a statement
of the theorem derived for this new transformed variable.
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All the proofs have been placed in the appendix, so the
inquisitive reader can refer to the end of the document for
a detailed, step by step proof of each of the four results.

2.1. Uncentered White Noise

Theorem 2.1. Let {xt}Tt=1 be a stochastic process defined
as xt = µ+ut where µ is a constant and ut ∼ iid(0, σ2

u) is a
white noise. Let εt ∼ iid(0, σ2

ε ) be another white noise inde-
pendent from ut. Define
zt = xtεt = µεt + utεt. Let σ̂2

z =
∑T
t=1(zt−z̄T )2

T−1
be the un-

biased and consistent estimator of V ar(zt), then

√
T z̄T
σ̂z

 N(0, 1)

Proof: See Appendix A.

2.2. Uncentered White Noise with Level Breaks

Theorem 2.2. Let {xt}Tt=1 be a stochastic process defined
as xt = µ+θDUt+ut where µ is a constant, ut ∼ iid(0, σ2

u)

is a white noise and DUt is a level dummy variable defined
as:

DUt =

0 if t ≤ Tu

1 if t > Tu
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where Tu = bλuT c is the break time (b·c is the floor func-
tion) and λu ∈ (0, 1). Let εt ∼ iid(0, σ2

ε ) be another white
noise independent from ut and assume that both ut and
εt have finite third moments. Define zt = xtεt = µεt +

θDUtεt + utεt.
Then

∑T
t=1 zt√

V ar(
∑T
t=1 zt)

=
T−1

∑T
t=1 zt√

V ar(T−1
∑T
t=1 zt)

=
√
T z̄
σ̂z
 N(0, 1)

where

V ar(T−1

T∑
t=1

zt) = T−1
[
λuσ

2
z,B + (1− λu)σ2

z,A

]
, for large T

Proof: See Appendix B.

2.3. Trend Stationary Process

Theorem 2.3. Let {xt}Tt=1 be a stochastic process defined
as xt = µ + βt + ut where µ and β are constants, ut ∼
iid(0, σ2

u) is a white noise and t = 1, ..., T . Let εt ∼ iid(0, σ2
ε )

be another white noise independent from ut. Define zt =

xtεt = (µ+ βt+ ut)εt. Then

T−1
∑T

t=1 zt√
V ar

(
T−1

∑T
t=1 zt

)  √3

[
ωε(1)−

∫ 1

0

ωε(r)dr

]
∼ N(0, 1)

where ωε(r) is standard brownian motion (Wiener process).
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Proof: See Appendix C.

2.4. Trend Stationary Process with Trend and Level
Breaks

Theorem 2.4. Let {xt}Tt=1 be a stochastic process defined
as xt = µ + θDUt + βt + γDTt + ut where µ, θ, β and
γ are constants and ut ∼ iid(0, σ2

u) is a white noise. The
level dummy and trend dummy variables, DUt and DTt,
respectively, are defined as:

DUt =

0 if t ≤ Tu

1 if t > Tu

where Tu = bλuT c is the level break time and λu ∈
(0, 1). The trend dummy variable is

DTt =

0 if t ≤ Tτ

t− Tτ if t > Tτ

where Tτ = bλτT c is the trend break time and λτ ∈
(0, 1). Let εt ∼ iid(0, σ2

ε ) be another white noise indepen-
dent from ut. Define

zt = xtεt = (µ+ θDUt + βt+ γDTt + ut)εt

11



. Then

T−1
∑T

t=1 zt√
V ar

(
T−1

∑T
t=1 zt

) =
T−

3
2

∑T
t=1 zt√

T−3V ar
(∑T

t=1 zt

)  

 

([
β + γ(1− λτ )

3
2

]
ωε(1)− β

∫ 1

0
ωε(r)dr − γ

∫ 1

λτ
ωε(r)dr

)
[
(β+γ)2

3 − γλτ (γ + β) + γ2λ2τ

] ∼ N(0, 1)

(2.1)

Proof: See Appendix D.
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Chapter 3

Computational Statistics

3.1. Monte Carlo Simulations

We have now proved that data generated from any of
the aforementioned data generating processes can be trans-
formed in such a way that a very specific function of the
data has a limiting standard gaussian distribution. One
of the most recurring questions with respect to asymptotic
results is the following: At what sample size can one say
that the statistic in question actually begins to behave as
theoretical limiting result says it is distributed? Of course,
there’s no definite and clear cut answer to this question
but one way to provide an approximate answer is compu-
tational statistics, namely Monte Carlo simulations. What
follows is a detailed description of the simulations that were
done to test under which conditions the four asymptotic re-
sults begin to show their true colors and parameters affect
the limiting distribution.
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1. Simulate T realizations of the data generating process
xt

2. Multiply each of these data by an independent white
noise εt and generate T new variables zt = xtεt

3. Apply the transformation stated in each theorem to
obtain the statistic ST =

√
T z̄T
σ̂z

4. Repeat steps 1-3 N times (we did 1000) to obtain a
vector statistics ST of length N

5. Apply a test of normality to this vector: Shapiro-
Wilk, Kolmogorov-Smirnov, and/or Jarque-Bera and
record whether the test rejects that the vector of
statistics ST has a standard normal distribution.

6. Repeat steps 1-5 M times (we used 1000) and calcu-
late the proportion of times that the null hypothesis
of normality was rejected

7. Repeat steps 1-6 for all desired parameter values:
noise variances (σ2

u, σ
2
ε ), level breaks θ, trend breaks

γ, break times λu, λτ , and sample sizes T

The Monte Carlo simulations were done for all possible
combinations of samples sizes T ∈ {50, 200, 500, 1000, 10000},
noise variances (low, medium, high), level breaks (low,
medium, high), trend breaks (low, medium, high), and
break times (0.25, 0.5, 0.75). Note that we simulated the

14



theoretical results for only 3 different values of each pa-
rameter due to computational limits. For the first data
generating process, uncentered white noise, we did a total
of 5x3=15 simulations, where doing step 1-6 counts as one
simulation. That is, for the first process we obtained 45
null hypothesis rejection proportions (15 for each test of
normality, 3 tests of normality). For the second process,
uncentered white noise with level breaks, we did a total of
5x3x3x3=135 simulations for a total of 405 null hypothesis
rejection proportions (15 for each test of normality, 3 tests
of normality). For the third data generating process, trend
stationary process, we did a total of 5x3=45 simulations for
a total of 45 null hypothesis rejection proportions. Finally,
for the fourth process, trend stationary with level and trend
breaks, we did a total of 5x3x3x3x3=405 simulations for a
total of 1215 null hypothesis rejection proportions. All this
data was collected and analyzed via OLS regressions in or-
der to asses how each parameter affects the proportion of
times the null hypothesis of normality is rejected.

3.2. Regression Analysis of Simulated Data

Having realized the aforementioned simulations, we
are now free to analyze the data as we wish. In partic-
ular, we wish to measure the magnitude and direction in
which a variation in any of the parameters of the underly-
ing data generating process xt affects the null hypothesis

15



that the test statistic defined as ST =
√
T z̄T
σ̂z

has a limit-
ing standard gaussian distribution. With this objective in
mind, we estimated the following OLS model:

Ri = β0 + β1Λi + β2Γi + β3Θi + β4Σi + β5Ti + εi (3.1)

where Ri is the dependent variable that measures the pro-
portion of times (out of 1000) that the null hypothesis of
normality of the test statistic was rejected, Λi ∈{0.25, 0.5,
0.75} are the break times, Γi ∈{low, medium, high} are
the trend breaks, Θ ∈{low, medium, high} are the level
breaks, Σi ∈{low, medium, high} are the variances of the
white noises, and T ∈ {50, 200, 500, 1000, 10000} are the
samples sizes. As reader will notice, we used only three
different values for the break times, level/trend breaks, and
white noise variances as well as only five different sample
sizes. The reason for restricting our Monte Carlo simula-
tions to such a small variety of parameter values is that we
were limited in both time and computational capacity. In-
deed, the simulations that generated our final data set took
more than 75 hours to complete. Additionally, the decision
of what constituted a “low”, “medium” or “high” parameter
value was quite arbitrary. One of the suggestions made in
the Future Work section is surpassing the limitations that
were just mentioned.

The results of this OLS regression are summarized
in Table 3.1 and Table 3.2. Table 3.1 presents regres-
sion results for data from various data generating pro-
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cesses for different tests of normality: Shapiro-Wilk (S-W),
Kolmogorov-Smirnov (K-S), and Jarque-Bera (J-B). The
first column shows the regression results using data from
the uncentered white noise and trend stationary process
simulations for all three tests of normality. The second,
third, and fourth column show the regression results for
data simulated using all four time series processes using the
null hypothesis rejection proportion of the Shapiro-Wilk,
Kolmogorov-Smirnov, and Jarque-Bera tests, respectively.
The fifth column shows the regression results using data
from all data generating processes and all three tests of
normality (hence the 1710 observations) and the final col-
umn shows the regression results for data simulated from
an uncentered white noise with level breaks using all three
tests of normality. Table 3.2 shows the regression results
for the same model as in (3.1) for data simulated from a
trend stationary process with trend and level breaks. The
reason for separating the regression results into two ta-
bles is that the trend stationary process with trend and
level breaks includes many more parameters than say the
uncentered white noise or simply the trend stationary pro-
cess. The first thing one should notice is that the inter-
cept is correctly right around 0.05. This can be interpreted
as follows. If all parameter values were equal to zero, in
which case we are dealing with pure white noise as a data
generating process, then the null hypothesis rejection rate
should be exactly 0.05, theoretically. That is, the classical
central limit theorem guarantees asymptotic normality for

17



the test statistic ST whenever the underlying data gener-
ating process is a sequence of independent and identically
distributed random variables with finite first and second
moments. The second row panel in Table 3.1 shows the
regression coefficients for the white noise variance, where
the omitted category is the “low” variance. A priori, one
would expect that coefficient to be positive and significant.
That is, the higher the variance of the white noise, the less
the test statistic ST behaves “normally”. More intuitively,
whenever a random variable has a high variance and one
wishes to estimate its population mean using the sample
mean, one would typically need a higher sample size for
a better approximation compared to the case where the
underlying random variable has a lower variance. This is
because the variance of the sample variances depends on
both the variances of the underlying random variable and
the sample size. Another reason why one would expect a
positive coefficient for the white noise variance has to do
with the concept of signal to noise ratio. When the white
noise variances rises, the signal to noise ratio decreases and
hence the signal (or data) that one observes is comprised
of more “undesired” random noise and less “desired” sig-
nal. On the other hand, the higher the variance of the
white noise, the more the process xt resembles pure white
noise and by Theorem 3.1 the asymptotic normality of the
test statistic follows directly. The third panel in Table 3.1
shows the regression coefficients for different sample sizes,
being T = 200 the omitted reference category. As can be
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seen, a change from T = 200 to T = 50 causes an increase
in the dependent variable. That is, increasing the sample
size from 50 to 200 has the effect of lowering the rejection
rate of the null hypothesis. Intuitively, this means that in-
creasing the sample size makes the test statistic ST become
more gaussian, so to speak. On the other hand, the regres-
sion coefficients for larger sample sizes are not significant.
This tells us that an increase in sample size from 200 to
500 or from 200 to 10,000 doesn’t do much with regards to
making the test statisticmore gaussian. At first glance, one
could interpret this as establishing the sample size at which
the limiting distribution stated by any of the four central
limit theorems begins to hold. Yet we will refrain making
such authoritative statements as we prefer a more reserved
stance: the data from our limited simulations seem to sug-
gest that a sample size of 200 is enough for asymptotic
normality. The fourth and fifth panel in Table 3.1 show
the regression coefficients for the level break time and the
level break size, respectively. A priori, one would expect
a test statistic ST , obtained from a data generating pro-
cess with a break time λu ∈ (0, 1) closer to the lower and
upper bound, to be more gaussian than when the break
occurs close to λu = 0.5. For example, consider data gen-
erated by an uncentered white noise with level breaks with
the break occurring close to either extreme λu ∈ {0, 1}.
Evidently, that specification corresponds to that of an un-
centered white noise without level breaks for which the
asymptotic normality of the test statistic follows directly
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from the classical central limit theorem. Hence, since the
omitted category in the regression results is λu = 0.5, one
would expect the regression coefficients to be negative. Yet,
the results are partially contrary to that. The regression
coefficients for the size of the level break are completely
intuitive. The smaller the break size, the more the process
represents uncentered white noise (i.e. a sequence of iid
variables) and so the null hypothesis rejection rate drops.
Finally, Table 3.2 shows exactly the same sign and signif-
icance associated with the regression coefficients for the
data generating process’ parameters. The only additional
parameter used as an independent variable in this regres-
sion is the trend break, which is statistically insignificant
in explaining the null hypothesis rejection rate.
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Table 3.1: Regression Results for Miscellaneous Data Generating Pro-
cesses
H0 Rejection Rate UWN & TS All S-W All K-S All J-B All-All UWN with LB

(Intercept) 0.0464∗∗∗ 0.0516∗∗∗ 0.0492∗∗∗ 0.0476∗∗∗ 0.0495∗∗∗ 0.0379∗∗∗

(0.0023) (0.0029) (0.0011) (0.0027) (0.0014) (0.0050)
White Noise Variance

Medium 0.0006 -0.0004 -0.0002 -0.0012 -0.0006 -0.0023
(0.0022) (0.0027) (0.0010) (0.0025) (0.0013) (0.0037)

High -0.0027 -0.0018 0.0003 -0.0032 -0.0016 -0.0053
(0.0022) (0.0027) (0.0010) (0.0025) (0.0013) (0.0037)

Sample Size
(Reference T = 200)

T = 50 0.0111∗∗∗ 0.0280∗∗∗ 0.0164∗∗∗ 0.0254∗∗∗ 0.0233∗∗∗ 0.0369∗∗∗

(0.0028) (0.0034) (0.0013) (0.0032) (0.0016) (0.0047)
T = 500 0.0024 0.0003 -0.0004 0.0020 0.0007 0.0005

(0.0028) (0.0034) (0.0013) (0.0032) (0.0016) (0.0047)
T = 1000 -0.0009 0.0012 −0.0024† 0.0027 0.0005 0.0007

(0.0028) (0.0034) (0.0013) (0.0032) (0.0016) (0.0047)
T = 10000 0.0056† -0.0002 0.0005 0.0025 0.0009 0.0012

(0.0028) (0.0034) (0.0013) (0.0032) (0.0016) (0.0047)
Level Break Time

λu = 0.25 0.0041
(0.0037)

λu = 0.75 0.0167∗∗∗

(0.0037)
Level Break

Medium Break 0.0076∗

(0.0037)
High Break 0.0113∗∗

(0.0037)
N 90 570 570 570 1710 405

Standard errors in parentheses
† significant at p < .10; ∗p < .05; ∗∗p < .01; ∗∗∗p < .001
Source: Prepared by the author using simulated data not publicly accessible

21



Table 3.2: Regression Results for TS Process with Level and Trend
Breaks
H0 Rejection Rate S-W K-S J-B Combined

(Intercept) 0.0419∗∗∗ 0.0478∗∗∗ 0.0413∗∗∗ 0.0437∗∗∗

(0.0036) (0.0016) (0.0034) (0.0018)
Break Time

λτ = λu = 0.25 0.0040 -0.0014 0.0057∗ 0.0028∗

(0.0025) (0.0011) (0.0023) (0.0012)
λτ = λu = 0.75 0.0117∗∗∗ 0.0039∗∗∗ 0.0077∗∗∗ 0.0078∗∗∗

(0.0025) (0.0011) (0.0023) (0.0012)
Trend Break

Medium 0.0002 0.0004 -0.0020 -0.0005
(0.0025) (0.0011) (0.0023) (0.0012)

High -0.0008 0.0023∗ -0.0029 -0.0005
(0.0025) (0.0011) (0.0023) (0.0012)

Level Break
Medium 0.0019 -0.0006 -0.0005 0.0003

(0.0025) (0.0011) (0.0023) (0.0012)
High 0.0099∗∗∗ 0.0008 0.0088∗∗∗ 0.0065∗∗∗

(0.0025) (0.0011) (0.0023) (0.0012)
White Noise Variance

Medium 0.0005 -0.0008 -0.0003 -0.0002
(0.0025) (0.0011) (0.0023) (0.0012)

High 0.0000 0.0003 -0.0011 -0.0002
(0.0025) (0.0011) (0.0023) (0.0012)

Sample Size
T = 50 0.0235∗∗∗ 0.0151∗∗∗ 0.0204∗∗∗ 0.0197∗∗∗

(0.0032) (0.0014) (0.0030) (0.0015)
T = 500 0.0000 -0.0007 0.0024 0.0006

(0.0032) (0.0014) (0.0030) (0.0015)
T = 1000 0.0014 −0.0028∗ 0.0030 0.0005

(0.0032) (0.0014) (0.0030) (0.0015)
T = 10000 -0.0011 0.0009 0.0017 0.0005

(0.0032) (0.0014) (0.0030) (0.0015)
N 405 405 405 1215

Standard errors in parentheses
† significant at p < .10; ∗p < .05; ∗∗p < .01; ∗∗∗p < .001

Source: Prepared by the author using simulated data not publicly accessible
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Chapter 4

Potential Applications

In this section, we will discuss two possible applica-
tions of the theoretical results presented in this paper. It
is my conjecture that the central limit theorems presented
here are also useful in the general context of instrumental
variable regression for measuring the relationship between
risk and return in finance, as in The VIX, the Variance
Premium, and Expected Returns. However, given the high
level of technicality of that paper, it is beyond the scope of
the paper to endeavor into applications such at those. We
now present an application of the central limit theorems
which would allow us to derive the asymptotic distribution
of regression coefficients between variables generated by
any of the four time series processes considered in this work
and another application where the central limit theorem is
used to construct an exogeneity test for the independent
variables in an OLS regression.
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4.1. Asymptotic Distribution of Regression Coeffi-
cients

The intermediate results obtained in this thesis in the
process of proving the final results are useful in the con-
text of an OLS regression as in Understanding Spurious
Regression in Econometrics (Phillips, 1986). Phillips ob-
tains the asymptotic distribution of regression coefficients,
test statistics, and the coefficient of correlation R2 under
the assumption that both the explanatory and dependent
variable are independent AR(1) processes. Suppose one
has a data set with two independent variables, xt and yt,
both originating from any of the four data generating pro-
cesses considered in this work. Suppose as well that you
estimate the following simple OLS regression:

yt = α + βxt + εt (4.1)

and obtain the residuals êt = yt − α̂ − β̂xt from the re-
sulting estimation of the model specified in (4.1). If the
residuals have the desired properties of white noise (i.e. no
autocorrelation, constant mean and variance) then

T∑
t=1

xtêt =
T∑
t=1

xt(yt−α̂−β̂xt) =
T∑
t=1

xtyt−α̂
T∑
t=1

xt−β̂
T∑
t=1

xt

(4.2)
has a known limiting distribution and hence one derive
the asymptotic behavior of α̂ and β̂ since the asymptotic
behavior of

∑T
t=1 xt,

∑T
t=1 yt, and

∑T
t=1 xtyt can also be

24



easily obtained. Just as in Phillips’ paper, this would not
only allow us to detect if and when we’re in the presence
of a spurious regression but more importantly why.

4.2. Exogeneity Test

A second possible application of the main results of
this thesis is in the context of an OLS regression. Two of
the many assumptions in OLS regression is that the ex-
planatory variables are independent of and uncorrelated
with the error term and that the covariance matrix of the
error term is a diagonal matrix with a constant term in
all entries of the diagonal. Also, recall that the theorems
of this paper state that if xt is independent from a white
noise εt then it follows that ST =

√
T z̄T
σ̂z
∼ N(0, 1) where

zt = xtεt. With this in mind, replace εt with the regres-
sion residuals êt and we now have a test statistic. Under
the null hypothesis that xt is independent from êt, the test
statistic ST has a standard normal distribution, assuming
of course that êt has the properties of white noise. Hence,
if the researcher can provide evidence that the residuals
have constant first two moments and that they are not au-
tocorrelated then ST is an adequate test statistic for the
hypothesis of independence between the independent vari-
able xt and the error term. Notice that this proposed test
statistic exploits the contrapositive of the statement of the
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theorem

xt ⊥⊥ εt ⇒
√
T z̄T
σ̂z

∼ N(0, 1) ⇐⇒
√
T z̄T
σ̂z

6∼ N(0, 1)⇒ xt 6⊥⊥ εt

We emphasize to the reader that this proposed test will
only work when the assumption that the residuals have
the property of white noise holds (i.e. is supported by the
data) and when the underlying data generating process of
the time series xt is one of the four considered in this paper.
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Conclusions and Future Work

In this thesis, we have derived central limit theorems
for data generated from four different stochastic processes.
We have shown that when this data multiplied by an inde-
pendent white noise then the statistic used in the classical
central limit theorem also has a standard normal distri-
bution under relatively weak conditions. This is surpris-
ing since the sequence of random variables generated by
the product of white noise and any of the trend station-
ary processes is not only heterogeneous in its distribution
but has a variance that does not have an upper bound.
In this sense, it does not meet the usual conditions for
the central limit theorem and hence these data generat-
ing processes required asymptotic theory specific to their
statistical properties.

We then used computational statistics in order to pro-
vide evidence regarding the sample size required for the
limiting distribution to begin to emerge, the effect of break
times and break sizes as well as the effect of the variances
of the white noises on the asymptotic results. Some of the
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conclusions reached from this simulation exercise resulted
counter intuitive while others did not. Yet, the regression
results obtained from the simulated data must be taken
with a grain of salt as limitations in computing power hin-
dered us from constructing as rich and comprehensive a
data set as we would have liked.

As future work, we propose to carry out much finer
Monte Carlo simulations where a larger set of values for the
white noise variances, break times, level/trend breaks, and
sample sizes. This would allow us to reach far more robust
and firm conclusions regarding the effect of the variations of
data generating process’ parameter values on the rejection
rates of the null hypothesis of normality of the test statistic.
Furthermore, we wish to develop similar asymptotic theory
for a wider range of data generating process with the goal
of building upon the ever growing literature on asymptotic
theory for econometricians.
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Appendix A - Proof of Theorem 3.1

Proof of Theorem 3.1

Theorem. Let {xt}Tt=1 be a stochastic process defined as
xt = µ + ut where µ is a constant and ut ∼ iid(0, σ2

u) is
a white noise. Let εt ∼ iid(0, σ2

ε ) be another white noise
independent from ut. Define

zt = xtεt = µεt + utεt.

Let σ̂2
z =

∑T
t=1(zt−z̄T )2

T−1
be the unbiased and consistent esti-

mator of V ar(zt), then

√
T z̄T
σ̂z

 N(0, 1)

Proof. The fact that ut ⊥⊥ εt, where ⊥⊥ denotes statistical
independence, together with the properties of white noise
imply that zt ⊥⊥ zτ ∀ t 6= τ . Furthermore, the expected
value of zt is

E[zt] = E[xtεt] = E[xt]E[εt] = 0 ∀ t
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where the second equality is an implication of the indepen-
dence between xt and εt. The following lemma is useful for
the derivation of the variance of zt.

Lemma .1. For i = 1, ..., n let the random variables Xi be
independent and consider (measurable) functions
gi : R → R, so that gi(Xi), i = 1, ..., n are random vari-
ables. Then the random variables gi(Xi), i = 1, ..., n are
also independent. Proof: See (Roussas, 1997).

The variance of zt is

V ar(zt) = E[z2
t ] = E[x2

t ε
2
t ] = E[x2

t ]E[ε2t ]

For the last equality we used the fact that x2
t ⊥⊥ ε2t by

Lemma 1 and the fact that if two random variables X and Y
are independent, then E[XY ] = E[X]E[X]. The expected
value of ε2t is E[ε2t ] = V ar(ε2t ) = σ2

ε . The expected value of
x2
t is

E[x2
t ] = E[(µ+ ut)

2] = E[µ2 + 2µut + u2
t ] = µ2 + σ2

u

We then have that

V ar(zt) = E[x2
t ]E[ε2t ] = (µ2 + σ2

u)σ
2
ε = σ2

z ∀ t.

Since εt and ut are each respectively independent and and
identically distributed, this implies that zt ∼ iid(0, σ2

z)
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with σ2
z < ∞. The stochastic process {zt}Tt=1 meets all

conditions necessary for the classic Central Limit Theo-
rem. Define z̄T = T−1

∑T
t=1 zt, then, by the Central Limit

Theorem, as T →∞

T−1
∑T

t=1 zt√
V ar(T−1

∑T
t=1 zt)

=

√
T z̄T
σz

 N(0, 1) (3)

where  means weak convergence or convergence in dis-
tribution. Furthermore, since the zt’s are i.i.d., σz can be
approximated by σ̂2

z =
∑T
t=1(zt−z̄T )2

T−1
and convergence is still

guaranteed by Slutsky’s theorem. That is,

√
T z̄T
σ̂z

 N(0, 1)

Here’s another way to arrive at the same result. Take
the sum over t of the realizations of the stochastic process
{zt}Tt=1. Then

T∑
t=1

zt =
T∑
t=1

xtεt = µ
T∑
t=1

εt︸ ︷︷ ︸
Op(T

1
2 )

+
T∑
t=1

utεt︸ ︷︷ ︸
Op(T

1
2 )

Note that utεt is also white noise ∼ iid(0, σ2
uσ

2
ε ). By

the Central Limit Theorem,
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T−
1
2

T∑
t=1

zt = µT−
1
2

T∑
t=1

εt + T−
1
2

T∑
t=1

utεt  Y1 + Y2

where Y1 ∼ N(0, µ2σ2
ε ) and Y2 ∼ N(0, σ2

uσ
2
ε ). Also

notice that since

cov(εt, εtut) = E[εt(εtut)] = E[ε2tut] = E[ε2t ]E[ut] = 0

then cov(Y1, Y2) = 0 which implies that

Y1 + Y3 ∼ N(0, (µ2 + σ2
u)σ

2
ε )

which is the same result as (1).

�
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Appendix B - Proof of Theorem 3.2

Theorem. Let {xt}Tt=1 be a stochastic process defined as
xt = µ + θDUt + ut where µ is a constant, ut ∼ iid(0, σ2

u)

is a white noise and DUt is a level dummy variable defined
as:

DUt =

0 if t ≤ Tu

1 if t > Tu

where Tu = bλuT c is the break time (l·c is the floor func-
tion) and λu ∈ (0, 1). Let εt ∼ iid(0, σ2

ε ) be another white
noise independent from ut and assume that both ut and εt
have finite third moments. Define

zt = xtεt = µεt + θDUtεt + utεt.

Then∑T
t=1 zt√

V ar(
∑T

t=1 zt)︸ ︷︷ ︸
Lyapunov’s Theorem

=
T−1

∑T
t=1 zt√

V ar(T−1
∑T

t=1 zt)
=

√
T z̄

σ̂z︸ ︷︷ ︸
σ̂z

p→σz and Slutsky

 N(0, 1)
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where

V ar(T−1

T∑
t=1

zt) = T−1
[
λuσ

2
z,B + (1− λu)σ2

z,A

]
, for large T

Proof. By independence of xt and εt, the expected value of
zt is

E[zt] = E[xtεt] = E[xt]E[εt] = 0

Given that the expected value of zt is zero, the variance of
zt is

V ar(zt) = E[z2
t ] = E[x2

t ε
2
t ] = E[x2

t ]E[ε2t ] (4)

where the last equality is due to the independence of xt
and εt (again by Lemma 1). The expected value of ε2t is
E[ε2t ] = V ar(ε2t ) = σ2

ε . The expected value of x2
t is

E[x2
t ] = E[(µ+ θDUt + ut)

2] =

E[µ2 + θ2DUt + u2
t + 2µθDUt + 2µut + 2θDUtut]

⇒ E[x2
t ] =

µ2 + σ2
u if t ≤ Tu

µ2 + σ2
u + θ2 + 2µθ if t > Tu

(5)

Finally, from (2) and (3) we can deduce that

V ar(zt) =

(µ2 + σ2
u)σ

2
ε ≡ σ2

z,B if t ≤ Tu

(µ2 + σ2
u + θ2 + 2µθ)σ2

ε ≡ σ2
z,A if t > Tu

(6)

By a similar argument made in result 1, all the zt’s are
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independent with finite variance although not identically
distributed since the variance is different before and after
the level break time Tu. In this case, zt does not meet the
conditions for the standard Central Limit Theorem, reason
for which we refer to the following theorem.

Theorem (Lyapunov). Let X1, ..., XT have finite means
E[Xt], variances V ar(Xt) = E[(Xt − E[Xt])

2] and absolute
moments E[|Xt − E[Xt]|2+δ] with δ > 0 and suppose BT =∑T

t=1 V ar(Xt) is the variance of the sum
∑T

t=1 Xt. If for
some δ > 0

lim
T→∞

E[|Xt − E[Xt]|2+δ]

B
1+ δ

2
T

= 0

Then as T →∞∑T
t=1Xt −

∑T
t=1 E[Xt]√

BT

 N(0, 1)

In the case of zt defined in this section, supposing zt
meets the conditions for this theorem for δ = 1 would re-
quire that,

lim
T→∞

∑T
t=1 E[|xt|3]E[|εt|3]

(λuT (µ2 + σ2
u)σ

2
ε + (1− λu)T (µ2 + σ2

u + θ2 + 2µθ)σ2
ε )

3
2︸ ︷︷ ︸

Op(T
3
2 )

= 0

which would clearly be satisfied if the numerator is
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op(T
3
2 ). That is, the condition for Lyapunov’s Theorem

would be satisfied if the proper assumptions are made about
the third moment of the white noises ut and εt, which is
not too strong of a requirement. Note that if we assume
that ut and εt have finite third moments, the numerator
in the previous expression is Op(T ) which means that the
limit does indeed converge to zero. Applying Lyapunov’s
Theorem, we have that∑T

t=1 zt√
V ar(

∑T
t=1 zt)

=
T−1

∑T
t=1 zt√

V ar(T−1
∑T

t=1 zt)

=

√
T z̄T√[

λuσ2
z,B + (1− λu)σ2

z,A

]  N(0, 1)

(7)

where

V ar(T−1

T∑
t=1

zt) = T−2

T∑
t=1

V ar(zt)

= T−2

bλuT c∑
t=1

V ar(zt) +
T∑

t=bλuT c+1

V ar(zt)


⇒ V ar(T−1

T∑
t=1

zt)

≈ T−1
[
λu(µ

2 + σ2
u)σ

2
ε + (1− λu)(µ2 + σ2

u + θ2 + 2µθ)σ2
ε

]
= T−1

[
λuσ

2
z,B + (1− λu)σ2

z,A

]
, for large T

(8)

Note that it’s not directly evident if the typical esti-
mator for the variance of zt, namely σ̂2

z =
∑T
t=1(zt−z̄T )2

T−1
, will
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converge in probability to the true variance of zt since the
the zt’s are not identically distributed before and after the
level break. As will be shown, the typical variance estima-
tor converges to the weighted averaged of the variances of
zt before and after the level break.

Define σ̂2
z ≡

∑T
t=1(zt−z̄T )2

T−1
as the estimator of V ar(zt).

First note that the numerator can be written as

T∑
t=1

(zt − z̄T )2 =
T∑
t=1

z2
t −

(
∑T

t=1 zt)
2

T

by (E1) and that E[ztzτ ] = E[zt]E[zτ ] = 0 for t 6= τ . Then,

E[σ̂2
z ] = E

[∑T
t=1(zt − z̄T )2

T − 1

]
=

1

T − 1
E

[
T∑
t=1

z2
t −

(
∑T

t=1 zt)
2

T

]

=
1

T − 1

[
T∑
t=1

E[z2
t ]−

E[(
∑T

t=1 zt)
2]

T

]

=
1

T − 1

[
T∑
t=1

V ar(zt)−
∑T

t=1 V ar(zt)

T

]
=

1

T − 1
[λuTσ

2
z,B + (1− λu)Tσ2

z,A

− 1

T
(λuTσ

2
z,B + (1− λu)Tσ2

z,A)]

(9)

37



⇒ E[σ̂2
z ] =

1

T − 1

T − 1

T

[
λuTσ

2
z,B + (1− λu)Tσ2

z,A

]
= λuσ

2
z,B + (1− λu)σ2

z,A

(10)

It should be clear from result (8) that the usual vari-
ance estimator is not an unbiased estimator of V ar(zt) (be-
cause the zt’s are not identically distributed for all t) but
rather its expected value is a convex combination of the
true variances of zt before and after the level break time,
which is precisely what we need. In that sense, the usual
variance estimator is unbiased with regards to the weighted
mean of population variances we wish to approximate.

Now, what we want is a consistent estimator for

V ar(T−1

T∑
t=1

zt).

The following results, whose proofs can be found in many
books on probability, show why the unbiasedness of σ̂2

z̄t is
a useful property in proving that σ̂2

z̄t

p→ V ar(T−1
∑T

t=1 zt).

Definition: Mean Squared Error (Wasserman, 2004): The
mean squared error of an estimator θ̂n is

MSE(θn) = E[(θ̂n − θ)2]

where θ is any constant.
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Definition: Convergence in quadratic mean
(Wasserman, 2004): Let X1, X2, ... be a sequence of ran-
dom variables and let X be another random variable. Xn

converges to X in quadratic mean (also called convergence
in L2), written Xn

qm→ X, if

E[(Xn −X)2]→ 0

Note that this definition still holds even if X is a point
mass at a c, for c constant. That is if P(X = c) = 1 and if
Xn

qm→ X then we say Xn
qm→ c.

Theorem. The mean squared error (MSE) can be written
as

MSE(θ̂n) = bias2(θ̂n) + V ar(θ̂n)

Proof: See (Wasserman, 2004)

Theorem. Convergence in quadratic mean implies conver-
gence in probability. That is, Xn

qm→ X ⇒ Xn
p→ X.

Proof: See (Wasserman, 2004)

We have shown that σ̂2
z ≡

∑T
t=1(zt−z̄T )2

T−1
is an unbiased

estimator of V ar(T−1
∑T

t=1 zt). We now prove that σ̂2
z

p→
V ar(T−1

∑T
t=1 zt). The following equalities with be useful

in this task.
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Equality 1 (E1)

T∑
t=1

(zt − z̄T )2 =
T∑
t=1

z2
t −

(
∑T

t=1 zt)
2

T
=

T∑
t=1

z2
t − T z̄2

Equality 2 (E2)

(
T∑
t=1

zt)
2 =

T∑
t=1

z2
t + 2

T−1∑
t=1

T∑
τ>t

ztzτ

By Equality 1,

σ̂2
z =

∑T
t=1(zt − z̄)2

T − 1

=
1

T − 1

[
T∑
t=1

z2
t − T z̄2

]
=

T

T − 1

∑T
t=1 z

2

T
− T

T − 1
z̄2

=
T

T − 1︸ ︷︷ ︸
→1

λu
∑λuT

t=1 z
2
t

λuT︸ ︷︷ ︸
p→λuσ2

z,B

+
(1− λu)

∑T
t=λuT+1 z

2
t

(1− λu)T︸ ︷︷ ︸
p→(1−λu)σ2

z,A


− T

T − 1︸ ︷︷ ︸
→1

z̄2︸︷︷︸
p→0

(11)

⇒ σ̂2
z =

∑T
t=1(zt − z̄)2

T − 1

p→ λuσ
2
z,B + (1− λu)σ2

z,A = V ar(T−1

T∑
t=1

zt)

(12)

40



Result (12) together with result (5) imply that

√
T z̄

σ̂z
 N(0, 1) (13)

�

Intermediate Results Concerning Stochastic Sums

We now present a set of results for stochastic sums that will
themselves be useful for proving the following two results.
These results are a collection gathered from three main
sources: Phillips (1986), Hamilton (1994) and a formulary
of asymptotics developed by my thesis advisor, Dr. Daniel
Ventosa-Santaulària.

Proposition 17.1, (Hamilton, 1994)

Suppose that ξt follows a random walk without drift,

ξt = ξt−1 + ut = ξ0 +
t∑
i=1

ut

where ξ0 = 0 and ut ∼ iid WN(0, σ2) is white noise. Let
ω(r) ∼ N(0, r) be standard brownian motion. Then as
T →∞

(a) T−
1
2

∑T
t=1 ut  σω(1)
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(b) T−
3
2

∑T
t=1 ξt  σ

∫ 1

0
ω(r)dr

(c) T−
3
2

∑T
t=1 tut  σ

[
ω(1)−

∫ 1

0
ω(r)dr

]
For subsamples where λ ∈ (0, 1) and bλT c denotes
the largest integer less than or equal to λT , we have
that

(d) T−
1
2

∑T
t=bλT c+1 ut  σω(1− λ)

(e) T−
3
2

∑T
t=bλT c+1 ξt  σ

∫ 1

λ
ω(r)dr

(f) T−
3
2

∑T
t=bλT c+1 tut  σ

[
ω(1− λ)−

∫ 1

λ
ω(r)dr

]
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Appendix C - Proof of Theorem 3.3

Theorem. Let {xt}Tt=1 be a stochastic process defined as
xt = µ+βt+ut where µ and β are constants, ut ∼ iid(0, σ2

u)

is a white noise and t = 1, ..., T . Let εt ∼ iid(0, σ2
ε ) be an-

other white noise independent from ut. Define zt = xtεt =

(µ+ βt+ ut)εt. Then

T−1
∑T

t=1 zt√
V ar

(
T−1

∑T
t=1 zt

)  √3

[
ωε(1)−

∫ 1

0

ωε(r)dr

]
∼ N(0, 1)

where ωε(r) is standard brownian motion (Wiener process).

Proof. The sum of zt’s is then

T∑
t=1

zt =
T∑
t=1

xtεt =
T∑
t=1

(µ+ βt+ ut)εt

= µ

T∑
t=1

εt︸ ︷︷ ︸
Op(T

1
2 )

+β
T∑
t=1

tεt︸ ︷︷ ︸
Op(T

3
2 )

+
T∑
t=1

utεt︸ ︷︷ ︸
Op(T

1
2 )

(14)
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⇒ T−
3
2

T∑
t=1

zt = βT−
3
2

T∑
t=1

tεt + op(1)

 βσε

[
ωε(1)−

∫ 1

0

ωε(r)dr

] (15)

where ωε(r) is a standard brownian motion [result due
to the functional central limit theorem and the continu-
ous mapping theorem: see (Hamilton, 1994) & (Phillips,
1986)]. We now know that

∑T
t=1 zt = Op(T

3
2 ). By the

independence of the zt’s,

V ar

(
T∑
t=1

zt

)
=

T∑
t=1

V ar (zt) =
T∑
t=1

E[z2
t ]

=
T∑
t=1

E[x2
t ]E[ε2t ] =

T∑
t=1

E[x2
t ]σ

2
ε

(16)

The expected value of x2
t is:

E[x2
t ] = E[µ2 + β2t2 + u2

t + 2µβt+ 2µut + 2βtut]

= µ2 + β2t2 + σ2
u + 2µβt

(17)

Substituting (17) into (16) we obtain that:

V ar

(
T∑
t=1

zt

)
=

T∑
t=1

V ar (zt)

=
T∑
t=1

(
µ2 + β2t2 + σ2

u + 2µβt
)
σ2
ε︸ ︷︷ ︸

O(T 3)

(18)

44



Finally, since

T∑
t=1

zt = Op(T
3
2 ) and V ar

(
T∑
t=1

zt

)
= O(T 3)

we have that

T−1
∑T

t=1 zt√
V ar

(
T−1

∑T
t=1 zt

) =

Op(T
1
2 )︷ ︸︸ ︷

T−1

T∑
t=1

zt

T−1

√√√√V ar

(
T∑
t=1

zt

)
︸ ︷︷ ︸

O(T 1
2

)

= Op(1)

(19)
We conclude that the ratio in (19) does have a limiting
distribution.

Notice that

T−3V ar

(
T∑
t=1

zt

)
→ β2σ2ε

3

⇒ T−1
∑T

t=1 zt√
V ar

(
T−1

∑T
t=1 zt

) =
T−

3
2

∑T
t=1 zt√

T−3V ar(
∑T

t=1 zt)

 
√

3

[
ωε(1)−

∫ 1

0

ωε(r)dr

] (20)

It will later be shown that the asymptotic result in (20)
actually has a standard Gaussian distribution. But first,
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we will show that (20) holds even when we substitute the
usual variance estimator for the theoretical variance. That
is, we want to show that the following holds:

√
T z̄T
σ̂z

=

∑T
t=1 zt√
T√
σ̂2
z

=

∑T
t=1 zt

T
3
2

1
T

√
σ̂2
z

=
T−

3
2

∑T
t=1 zt√

T−2σ̂2
z

=
T−

3
2

∑T
t=1 zt√

T−3V ar(
∑T

t=1 zt)
 
√

3

[
ωε(1)−

∫ 1

0

ωε(r)dr

] (21)

Notice that all that needs to be proved in this case is that
as T →∞

T−2σ̂2 p→ β2σ2
ε

3
= lim

T→∞
T−3V ar

(
T∑
t=1

zt

)

We prove this now. First, recall that zt = xtεt = (µ+ βt+

ut)εt. By definition, the variance estimator is

σ̂2
z =

∑T
t=1(zt − z̄T )2

T − 1

=
1

T − 1

 T∑
t=1

z2
t −

(∑T
t=1 zt
T

)2


=
1

T − 1

[
(T − 1)

∑T
t=1 z

2
t

T
−
∑

t6=τ ztzτ

T

]

=

∑T
t=1 z

2
t

T
−
∑

t6=τ ztzτ

T (T − 1)

(22)

The second term in the last equality will approach the sum
of all (T − 1) autocovariances of zt divided by T . By inde-
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pendence of zt, zτ ∀ t 6= τ the second term will converge to
zero and we can henceforth ignore it. We focus on

∑T
t=1 z

2
t

T
,

the first term of the last equality, from now on. First,

z2
t = (xtεt)

2 = (µ+ βt+ ut)
2ε2t

= (µ2 + β2t2 + u2
t + 2µβt+ 2µut + 2βtut)ε

2
t

So that the sum over t of z2
t is

T∑
t=1

z2
t = µ2

T∑
t=1

ε2t︸ ︷︷ ︸
Op(T )

+β2

T∑
t=1

t2ε2t︸ ︷︷ ︸
Op(T 3)

+
T∑
t=1

u2
t ε

2
t︸ ︷︷ ︸

Op(T )

+2µβ
T∑
t=1

tε2t︸ ︷︷ ︸
Op(T 2)

+2µ
T∑
t=1

utε
2
t︸ ︷︷ ︸

Op(T )

+2β
T∑
t=1

tutε
2
t︸ ︷︷ ︸

Op(T
3
2 )

(23)

We now make a quick side note in order to discuss the
order of convergence of each individual sum in (23). The
first term is clearly Op(T ) since scaling it by T−1 would
make it converge to σ2

ε . For the third term, notice that by
independence of ut, εt ∀ t, τ , wt = utεt has the properties
of white noise and hence wt ∼ WN(0, σ2

uσ
2ε), so that the

third sum scaled by T−1 will converge to σ2
uσ

2
ε . For the

fifth sum, notice that utε2t creates a new independent and
identically distributed random variable with expected value
equal to zero. It then suffices to scale that sum by T−1 to
make it converge to zero. The order of convergence of the
second, fourth and sixth term is discussed in further detail
down below.
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Take the fourth term in (23),

T∑
t=1

tε2t = ε21 + 2ε22 + ...+ Tε2T

=
T∑
t=1

ε2t +
T∑
t=2

ε2t +
T∑
t=3

ε2t + ...+
T∑

t=T−1

ε2t + ε2T

Now scale the fourth term in (23) by T−1,

∑T
t=1 tε

2
t

T
=

∑T
t=1 ε

2
t

T
+

∑T
t=2 ε

2
t

T
+

∑T
t=3 ε

2
t

T
+ ...+

ε2T
T

=
T

T

∑T
t=1 ε

2
t

T
+
T − 1

T

∑T
t=2 ε

2
t

T − 1
+
T − 2

T

∑T
t=3 ε

2
t

T − 2
+ ...+

1

T

ε2T
1

= σ̂2
ε

[
T + (T − 1) + (T − 2) + ...+ 1

T

]
= σ̂2

ε

T (T + 1)

2T
= σ̂2

ε

(T + 1)

2
(24)

where σ̂ε is a consistent estimator of the variance of εt.
Clearly then,

∑T
t=1 tε

2
t = Op(T 2). For the sixth term, as

was previously stated, utε2t is another white noise. Hence,
by result (c) of Proposition 17.1 it follows that

∑T
t=1 tutε

2
t =

Op(T
3
2 ). What remains to be shown is that the second term

in (23) is Op(T 3).
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T∑
t=1

t2ε2t = ε21 + 4ε22 + 9ε23 + 16ε24

+...+ (T − 1)2ε2T−1 + T 2ε2T

= (1)
T∑
t=1

ε2t + (3)
T∑
t=2

ε2t + (5)
T∑
t=3

ε2t

+...+ (2[T − 1]− 1)
T∑

t=T−1

ε2t + (2T − 1)ε2T

(25)

⇒
1

T

T∑
t=1

t2ε2t = (1)
1

T

T∑
t=1

ε2t + (3)
1

T

T∑
t=2

ε2t + (5)
1

T

T∑
t=3

ε2t

+...+ (2[T − 1]− 1)
1

T

T∑
t=T−1

ε2t + (2T − 1)
1

T
ε2T

= (1)
T

T

∑T
t=1 ε

2
t

T
+ (3)

T − 1

T

∑T
t=2 ε

2
t

T − 1
+ (5)

T − 2

T

∑T
t=3 ε

2
t

T − 2

+...+ (2[T − 1]− 1)
2

T

∑T
t=T−1 ε

2
t

2
+ (2T − 1)

1

T

ε2T
1

=
σ̂2
ε

T
[(1)T + (3)(T − 1) + (5)(T − 2)

+...+ [2(T − 1)− 1](2) + (2T − 1)(1)T ]

= σ̂2
ε

∑T
t=1(2t− 1)(T + 1− t)

T

=
σ̂2
ε

T

[
2T

T∑
t=1

t+ 2

T∑
t=1

t− 2
T∑
t=1

t2 − T 2 − T +
T∑
t=1

t

]

=
σ̂2
ε

T


O(T3)︷ ︸︸ ︷

2T 2(T + 1)

2
+

O(T2)︷ ︸︸ ︷
2T (T + 1)

2
−

O(T3)︷ ︸︸ ︷
2T (T + 1)(2T + 1)

6
−

O(T2)︷︸︸︷
T 2 −

O(T )︷︸︸︷
T +

O(T2︷ ︸︸ ︷
t(T + 1)

2


︸ ︷︷ ︸

O(T2)

(26)

where σ̂2
ε is a consistent estimator of σ2

ε . This implies
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that

T−3

T∑
t=1

t2ε2t = σ̂2
ε

T 3 − 2T 3

3

T 3
+ o(1)

p→ σ2ε

3
(27)

where all the terms that converge or collapse to zero
have been grouped in the term o(1). Finally, equations
(22), (23) and (27) together imply that

σ̂2
z

T 2
=

∑T
t=1 z

2
t

T 3
+ op(1) = β2

∑T
t=1 t

2ε2t
T 3

+ op(1)

p→ β2σ2
ε

3
= lim

T→∞
T−3V ar(

T∑
t=1

zt)

(28)

Result (28) proves that (21) holds.

Useful Results for Functionals of Brownian Motion

Definition (Beran, 1994): A standardWiener process (also
called Brownian motion) is a stochastic process {wt}t≥0 in-
dexed by nonnegative real numbers t with the following
properties:

(P1) w0 = 0

(P2) With probability 1, the function t→ wt is continuous
in t

(P3) The process {wt}t≥0 has stationary, independent in-
crements
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(P4) The increment wt+s − ws has a normal(0,t) distribu-
tion

The following results, which are proved below, also hold
and will prove useful for deriving the asymptotic distribu-
tion of results 3 and 4.

(i) w(r) ∼ N(0, r)

(ii) Cov (w(r), w(s)) = E [w(r)w(s)] = min{r, s}

(iii)
∫ u
l
w(r)dr ∼ N(0, u

3

3
+ 2l3

3
− l2u)

In particular:∫ t

0

w(r)dr ∼ N(0,
t3

3
) and

∫ 1

t

w(r)dr ∼ N(0,
1

3
+

2t3

3
−t2)

(iv)
Cov

(
w(t),

∫ u

l

w(r)dr

)
= min{t, u}u− min{t, u}2

2

−min{l, t}l +
min{l, t}2

2

(v) Cov
(∫ c

0
w(r)dr,

∫ d
0
w(s)ds

)
= min{c,d}2 max{c,d}

2 − min{c,d}3
6

(vi) Cov
(∫ 1

0
w(r)dr,

∫ 1

t
w(s)ds

)
= 1

3 + t3

6 −
t2

2

Proof: For (i), since w(0) = 0 write w(r) = w(r) − w(0)

and by property (4) we conclude that w(r) ∼ N(0, r). For
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(ii), suppose r < s. Then,

Cov (w(r)w(s)) = E[w(r)w(s)]− E[w(r)]E[w(s)]

= E[w(r)w(s)] = E[w(r)(w(s)− w(r) + w(r))]

= E[w(r)(w(s)− w(r))] + E[w2(r)]

=︸︷︷︸
(P3)

E[w(r)]E[w(s)− w(r)] + r = r

(29)

For (iii), since the integral is a linear functional of (Gaus-
sian) Brownian motion, then the integral in (iii) is Gaus-
sian. The formal proof uses a Riemann sum approximation
of the integral of Brownian motion but will not be done here
as it’s a ubiquitous result. We are interested only in the ex-
pected value and variance of the functional. The expected
value is

E
[∫ u

l

w(r)dr

]
=

∫ u

l

E[w(r)]dr =

∫ u

l

0dr = 0

The variance is

V ar

(∫ u

l

w(r)dr

)
= E

[∫ u

l

w(r)dr

∫ u

l

w(s)ds

]
=

∫ u

l

∫ u

l

E[w(r)w(s)]drds =

∫ u

l

∫ u

l

min{r, s}drds

=

∫ u

l

[∫ s

l

rdr +

∫ u

s

sdr

]
ds =

∫ u

l

(
r2

2

∣∣∣∣s
r=l

+ sr

∣∣∣∣u
r=s

)
ds

=

∫ u

l

[
−s2

2
− l2

2
+ su

]
ds =

[
−s3

6
− l2s

2
+
us2

2

] ∣∣∣∣u
s=l

= ... =
u3

3
+

2l3

3
− l2u

(30)
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For the particular results of (iii) substitute u = t, l = 0 and
u = 1, l = t, respectively. For (iv), we have that

Cov

(
w(t),

∫ u

l

w(r)dr

)
= E

[∫ u

l

w(t)w(r)dr

]
=

∫ u

l

min{t, r}dr

There are three cases. Suppose t ≤ l < u. Then

⇒ Cov

(
w(t),

∫ u

l

w(r)dr

)
=

∫ u

l

tdr = tr

∣∣∣∣u
r=l

= ut− lt
(31)

Now suppose l < t ≤ u. Then

⇒ Cov

(
w(t),

∫ u

l

w(r)dr

)
=

∫ t

l

rdr +

∫ u

t

tdr

=
r2

2

∣∣∣∣t
r=l

+ tr

∣∣∣∣u
r=t

= ... = tu− t2

2
− l2

2

(32)

Finally, suppose that l < u < t. Then

⇒ Cov

(
w(t),

∫ u

l

w(r)dr

)
=

∫ u

l

rdr =
r2

2

∣∣∣∣u
r=l

=
u2

2
− l2

2

(33)

So that results (31), (32) and (33) can be summarized
in one general result (iv).

For (v), suppose c < d. Then
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Cov

(∫ c

0

w(r)dr,

∫ d

0

w(s)ds

)
= E

[∫ c

0

w(r)dr

∫ d

0

w(s)ds

]
− E

[∫ c

0

w(r)dr

]
E
[∫ d

0

w(s)ds

]
=

∫ c

0

∫ d

0

E[w(r)w(s)]drds =

∫ c

0

∫ d

0

min{r, s}drds

=

∫ c

0

[∫ r

0

sds+

∫ d

r

rds

]
dr =

∫ c

0

[
s2

2

∣∣∣∣r
s=0

+ rs

∣∣∣∣d
s=r

]
dr

=

∫ c

0

[
r2

2
+ rd− r2

]
dr =

∫ c

0

[
−r2

2
+ rd

]
dr

=

[
−r3

6
+
dr2

2

] ∣∣∣∣c
r=0

=
−c3

6
+
dc2

2
(34)

Now suppose d < c. Then∫ c

0

∫ d

0

min{r, s}drds

=

∫ d

0

∫ d

0

min{r, s}dsdr +

∫ c

d

∫ d

0

min{r, s}dsdr

=

∫ d

0

[∫ r

0

sds+

∫ d

r

rds

]
dr +

∫ c

d

∫ d

0

sdsdr

=

∫ d

0

[
s2

2

∣∣∣∣r
s=0

+ rs

∣∣∣∣d
s=r

]
dr +

∫ c

d

s2

2

∣∣∣∣d
s=0

dr

=

∫ d

0

[
r2

2
+ rd− r2

]
dr +

∫ c

d

d2

2
dr

=

[
−r3

6
+
dr2

2

] ∣∣∣∣d
r=0

+
d2r

2

∣∣∣∣c
r=d

=
−d3

6
+
d3

2
+
d2c

2
− d3

2
=
−d3

6
+
cd2

2

(35)
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Taken together, (34) and (35) imply that

Cov

(∫ c

0

w(r)dr,

∫ d

0

w(s)ds

)
=

1

2
min{c, d}−1

6
min{c, d}3

(36)
For (vi), we have

Cov

(∫ 1

0

w(r)dr,

∫ 1

t

w(s)ds

)
= E

[∫ 1

0

∫ 1

t

w(r)w(s)dsdr

]
=

∫ 1

0

∫ 1

t

min{r, s}dsdr

=

∫ 1

0

∫ 1

t

rdsdr +

∫ 1

t

∫ 1

t

min{r, s}dsdr

=

∫ t

0

rs

∣∣∣∣1
s=t

dr +

∫ 1

t

[∫ r

t

sds+

∫ 1

r

rds

]
dr

=

∫ t

0

r(1− t)dr +

∫ 1

t

[
s2

2

∣∣∣∣r
s=t

+ rs

∣∣∣∣1
s=r

]
dr

= ... =
(1− t)t2

2
+

[
r2

2
− r3

6
− t2r

2

] ∣∣∣∣1
r=t

=
1

3
+
t3

6
− t2

2
(37)

We now prove that
√

3
[
ωε(1)−

∫ 1

0
ωε(r)dr

]
∼ N(0, 1).

Because this expression is a sum of two normally distributed
random variables, it itself is also normally distributed. By
results (i) and (iii) for brownian motion, it can easily be
shown that the expected value of (21) is equal to zero. We
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now show that the variance of (21) is equal to one.

V ar

(
w(1)−

∫ 1

0

w(r)dr

)
= V ar (w(1)) + V ar

(∫ 1

0

w(r)dr

)
−2Cov

(
w(1),

∫ 1

0

w(r)dr

)
= 1 +

1

3
− 2(1− 1

2
) =

1

3

(38)

The second to last line follows from results (i), (iii)
and (iv) for brownian motion. Finally, result (21) follows
directly from (38). �
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Appendix D - Proof of Theorem 3.4

Theorem. Let {xt}Tt=1 be a stochastic process defined as
xt = µ + θDUt + βt + γDTt + ut where µ, θ, β and γ

are constants and ut ∼ iid(0, σ2
u) is a white noise. The

level dummy and trend dummy variables, DUt and DTt,
respectively, are defined as:

DUt =

0 if t ≤ Tu

1 if t > Tu

where Tu = bλuT c is the level break time and λu ∈
(0, 1). The trend dummy variable is

DTt =

0 if t ≤ Tτ

t− Tτ if t > Tτ

where Tτ = bλτT c is the trend break time and
λτ ∈ (0, 1). Let εt ∼ iid(0, σ2

ε ) be another white noise
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independent from ut. Define

zt = xtεt = (µ+ θDUt + βt+ γDTt + ut)εt.

Then

T−1
∑T

t=1 zt√
V ar

(
T−1

∑T
t=1 zt

) =
T−

3
2

∑T
t=1 zt√

T−3V ar
(∑T

t=1 zt

)  

 

([
β + γ(1− λτ )

3
2

]
ωε(1)− β

∫ 1

0
ωε(r)dr − γ

∫ 1

λτ
ωε(r)dr

)
[

(β+γ)2

3
− γλτ (γ + β) + γ2λ2

τ

]
∼ N(0, 1)

Proof. The sum of zt’s is

T∑
t=1

zt =
T∑
t=1

xtεt =
T∑
t=1

(µ+ θDUt + βt+ γDTt + ut)εt

= µ
T∑
t=1

εt︸ ︷︷ ︸
Op(T

1
2 )

+θ
T∑
t=1

DUtεt︸ ︷︷ ︸
Op(T

1
2 )

+β
T∑
t=1

tεt︸ ︷︷ ︸
Op(T

3
2 )

+γ
T∑
t=1

DTtεt︸ ︷︷ ︸
Op(T

3
2 )

+
T∑
t=1

utεt︸ ︷︷ ︸
Op(T

1
2 )

(39)

The fourth term from the previous expression can be
rewritten using the definition of DTt as:
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γ

T∑
t=1

DTtεt = γ

T∑
t=Tτ+1

(t− Tτ )εt =

γ
T∑

t=Tτ+1

tεt − γT Tτ
T∑

t=TTτ +1

εt

= γ
T∑

t=bλτT c+1

tεt︸ ︷︷ ︸
Op(T

3
2 )

−γ bλτT c
T∑

t=bλτT c+1

εt︸ ︷︷ ︸
Op(T

3
2 )

(40)

Substituting (40) into (39) and scaling by T−
3
2 we obtain

T−
3
2

T∑
t=1

zt = βT−
3
2

T∑
t=1

tεt + γT−
3
2

T∑
t=bλτT c+1

tεt

−γT−
3
2λτT

T∑
t=bλτT c+1

εt + op(1)

(41)

Finally, taking the limit as T →∞

T− 3
2

T∑
t=1

zt  βσε

[
ωε(1)−

∫ 1

0
ωε(r)dr

]

+γσε

[
(1− λτ )

1
2 ωε(1)−

∫ 1

λτ

ωε(r)dr

]
− γλτ (1− λτ )

1
2 σεωε(1)

= σε

(
β

[
ωε(1)−

∫ 1

0
ωε(r)dr

]
+ γ

[
(1− λτ )

1
2 ωε(1)−

∫ 1

λτ

ωε(r)dr

]
− γλτ (1− λτ )

1
2 ωε(1)

)
= σε

([
β + γ(1− λτ )

3
2

]
ωε(1)− β

∫ 1

0
ωε(r)dr − γ

∫ 1

λτ

ωε(r)dr

)
(42)

We now know that
∑T

t=1 zt = Op(T
3
2 ). Now, from the
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independence of the zt’s we have that

V ar

(
T∑
t=1

zt

)
=

T∑
t=1

V ar (zt) =
T∑
t=1

E[z2
t ]

=
T∑
t=1

E[x2
t ]E[ε2t ] =

T∑
t=1

E[x2
t ]σ

2
ε

(43)

The expected value of x2
t is

E[x2
t ] = E[µ2 + θ2DU2

t + β2t2 + γ2DT 2
t + u2

t

+2µθDUt + 2µβt+ 2µγDTt + 2µut + 2θβDUtt

+2θγDUtDTt + 2θDUtut + 2βγDTtt+ 2βtut + 2γDTtut]

= µ2 + θ2DU2
t + β2t2 + γ2DT 2

t + σ2
u + 2µθDUt + 2µβt

+2µγDTt + 2θβDUtt+ 2θγDUtDTt + 2βγDTtt

(44)

Note that (43) and (44) imply that

V ar

(
T∑
t=1

zt

)
=

T∑
t=1

V ar (zt) = O(T 3)

since the terms

T∑
t=1

t2,

T∑
t=1

DT 2
t =

T∑
t=1

(t− Tτ )2

and
T∑
t=1

DTτ t =

T∑
t=1

(t− Tτ )t

dominate since they are all 0(T 3).
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Finally, since

T∑
t=1

zt = Op(T
3
2 ) and V ar

(
T∑
t=1

zt

)
= O(T 3)

we have that

T−1
∑T

t=1 zt√
V ar

(
T−1

∑T
t=1 zt

) =

Op(T
1
2 )︷ ︸︸ ︷

T−1
T∑
t=1

zt

T−1

√√√√V ar

(
T∑
t=1

zt

)
︸ ︷︷ ︸

O(T
1
2 )

= Op(1) (45)

We conclude that the ratio in (45) does have a limiting distri-
bution.

Note that

T−3V ar(
T∑
t=1

zt)→
[

(β + γ)2

3
− γλτ (γ + β) + γ2λ2

τ

]
σ2
ε

⇒
T−1

∑T
t=1 zt√

V ar
(
T−1

∑T
t=1 zt

) =
T−

3
2
∑T

t=1 zt√
T−3V ar

(∑T
t=1 zt

)  

61



 

([
β + γ(1− λτ )

3
2

]
ωε(1)− β

∫ 1
0 ωε(r)dr − γ

∫ 1
λτ
ωε(r)dr

)
[

(β+γ)2

3 − γλτ (γ + β) + γ2λ2
τ

]
∼ N(0, 1)

(46)
so that the asymptotic distribution depends on unknown pa-
rameters. Notice that the numerator of (46) is a linear com-
bination of normally distributed random variables (since both
the brownian motion and its integral are gaussian), hence (46)
also has a normal distribution. It should be clear from the re-
sults for brownian motion that (46) has expected value equal
to zero. Then, it follows that (46) has variance equal to one
since we are dividing the numerator by its theoretical standard
deviation. We do not prove following for this data generating
process and hence we present here are a conjecture

√
T z̄T
σ̂z

=
T−

3
2
∑T

t=1 zt√
σ̂2

T 2

p→
T−1

∑T
t=1 zt√

V ar
(
T−1

∑T
t=1 zt

) =
T−

3
2
∑T

t=1 zt√
T−3V ar

(∑T
t=1 zt

) (47)

Another equivalent way to express the conjecture is that

σ̂2

T 2

p→ T−3V ar

(
T∑
t=1

zt

)
(48)

which is what was proved for the previous data generating pro-
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cess. However, it has been shown through simulation that (46)
holds and indeed has a standard gaussian distribution.

�
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