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Introduction 

Rubinstein's (1982) infinitely repeated ultimatum game between two players 
provides a paradigm to analyze negotiation. We extend his analysis to the case 

in which the benefits to he distributed depend on the result of the negotiation, that 
is. on whose proposal is finally accepted and on how the benefits are distributed. 
Each player draws her proposals from a different set of possibilities, which is not 
assumed to be convex. We obtain general theorems classifying and calculating the 
results of this kind of negotiation game. One implication is a theoretical 
characterization of when a negotiation game becomes a principal agent game. Most 
of the paper is devoted to the proof of these results. We also give two brief 
examples of their application. 

The first example is one of the problem which motivated our research. We 
analy:re the simple case of negotiation (sharing a fixed pie) when the players have a 
concept of fairness. In this case, their final utility depends not only on their share of 
the pie but also on how fairly they feel it was cut; unfairness causing a loss of 
utility which may be different for each player. We find that the rule of sharing in 
half holds for a range of players including morally deficient players and players 
with weak characters (that is, not very willing to punish the other for being unfair). 

The se.cond example is Coumot duopoly. We consider a market supplied by 
two finns which are deciding how much to produce. Their proposals consist of 
taking observable actions in preparation for production, which announce their 
intended output The other finn accepts the proposal if it decides to maximize its 
profits taking as given the other ti.nu's output as implied by it~ actions. Instead, it 
may opt for a different level of production, and act accordingly. In such a situation, 
which is modeled by the infinitely repeated ultimatum game, not all Coumot 
equilibria (at which each firm has no incentives to deviate from its production level 
given the other firm's production level) are equilibria in the negotiation game. 

The plan of the paper is as follows. In section II we describe the general 
negotiation game which we solve, and write down the main results. In se.ction ill 
we apply these results to the simple case of negotiation when the players have a 
concept of fairness. In section IV we give our examples on duopoly. Section V 
constructs the proof of the general negotiation game. Then follow the final remarks 
and references. The Appendix contains the details of the proofs of the preceding 
se.ctions. 

The main results 

Joan and Mary play a negotiation game G00 ii la Rubinstein, consisting of an infinite 
alternated succession of two ultimatum games. QI and GM (see Figure 1). In GJ 
Joan makes a proposal which has utility payoffs (u, v) (for Joan and Mary 
respectively) chosen from her possibility set KI or opts for the reserve utility 

payoffs, UR~ 0 for Joan and VR ~ 0 for Mary. Mary decides either to accept the 
proposal, to reject it to make her own proposal, or to opt for the reserve utility. In 
the game QM the roles are reversed, and Mary makes a proposal (u, v) from her 
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possibility set KM. The proposals (u. v) are non-negative and the sets K1, KM are 
compact (and not necessarily connected). Joan and Mary discount future utility with 
discount rates p, µ, respectively. In the case of two payoffs with value zero we 

shall still suppose that the one occurring first is preferred. In the game G"" Joan is 

the first player to make a proposal. We also consider the game Goo, in which Mary 
plays first, and a game in which the players decide who should make the first offer. 

To solve these games, we define the functions f : DM ➔ R, g : D1 ➔ R, 
where 

DM = [-~, v•J, v• = sup(K1(v)), K1(v) = (v: 3 (u, v) e K1} 

DI=[-~, u•], u• = sup(KM(u)), KM(u) = {u 13 v: (u, v) e KM) 
by the formulae: 

f(x) = max(u 13 v;, x: (u, v) e K1}, 

g(x) = max{v 13 u;, x: (u, v) e KM). 
f and g are monotonically decreasing functions which are continuous on the left 
because K1 and KM are compact. These functions represent the maximum utility 
that each player can obtain by using her own set of proposals under the constraint 
of offering the other player a minimum utility x. 

We shall now state the payoffs of the negotiation games in the case when we 

set p = e-a:r, µ = e-P-r and let -c tend to zero. To do so we need the following 
definitions. 

Definition 1 A combination of strategies supports a pe,fect limit equilibrium with 

payoffs (uo, v0) if and only if 'v e > 0 3 "to> 0: 'v ~<"to there exists a strategic 
combination which supports a perfect equilibrium with payoffs (Ut, v,), and 
In, - ud < e, Iv, - vd < e. The limit payoffs are the payoffs of the perfect limit 

equilibria. ♦ 

Definition 2 Let PC1 be the set of piece-wise once differentiable functions with 
at most a finite number of discontinuities whose derivatives are piece-wise 
continuous except possibly at a finite number of points, with left and right limits 

existing everywhere. ♦ 

Definition 3 Define the sets 

I:Mo = (v E [VR, v+J r, K1(v) I f(v);, UR and f(v):;; u+ => g(f(v)) < v), 

EMo = {v e [vR, v+J n K1(v) I f(v);, UR, f(v):;; u+ and g(f(v)) = v}, 

FMo = {v e [VR, v+J n K1(v) I f(v);, UR, f(v):;; u+ and g(f(v)) > v}, 

rM0 =(v e I:Mo u EM0 13 e >0: [e2v, v) n (I:M0 u EM0) = 0); 

and write f"(v) = - f'(v)v/f(v) for the negative elasticity off where it exists. Define 

also the following conditions for points v0 e [vR, v+]. 
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(])voe fvR, v+] satisfies LHCI (left hand condition I) if 3 e > 0 for which, 

writing 1- ;;;; (vo-E. v0), J- c EMo and on 1- f has continuous derivatives, has g as 

its inverse, and ~(v) ~ a.113 on 1-, without equality occuring on subintervals of 1-. 

(2) voe [vR, v+] satisfies RHCl (right hand condition I) if 3 E > 0 for which, 

writing 1+ = (vo, v0+e), 1+ ~ EM0 and on 1+ f has continuous derivatives, has g as 

its inverse, and either f'(v) > alp arbitrarily closely to vo on J+ or t'(v) = a!P on 
subinterVals of!+ arbitrarily closely to v0• 

(3) voe [ VR, v+] satisfies LHC2 if 3 e > 0 for which :!:Mor, (vo-e, vo) = 0. 
(4) v0 E [vR, v+] satisfies RHC2 if Ve> 0 :EM0 r, (vo, v0+e)" 0.+ 

We shall simplify the passage to the limit as 't tends to zero by considering the 
case in which f and g are PC1, and that the number of boundary points of the sets 
I;M0, EMo. FMo, f'Mo defined in section II and f'M-r have a common bound N to the 
number of their boundary points. This excludes only pathological functions which 
have a lot of variation about some points but which are not particularly relevant 
economically. Further. we shall need the limits of the sets <l>M-r, <1>1-r defined above 
(see Propositions 2 and 4). We find that Joan's optimal proposals (U'•, v'•), are 
constructed as follows if they exist Let 

.EMo = ( v E EMo : v satisfies one left hand and one right hand condition}. 

For each v• e rMo u llMo let 

UJ+ = f(v*J, yJ* E cf>Mo. 
cf)M0, the limit set of proposals which Joan has available to offer Mary at least v* 
and to obtain U1*, is defined in Definition 7 and some of its properties are stated in 
Lemma 2. cf>Mo is contained and often equal to the set (v e [v*, v+] I (U'*, v) e 
K J}, which is usually a singleton. 

Mary's optimal proposal (UM•, yM*J are constructed as follows if they exists. 
Let 

Po'= (u E Po I µg(u/p) <! I::MoJ-
For each u"', let 

VM* = g(u•), UM* e cf>Jo s; (u E [u*, u+] I (u, yM*) E KM}. 

Similarly we define .Elo, fMo' and construct the limit proposals of a-. 

Theorem 1 Suppose that f and g are PC1 and that the sets :EM0, EM0 , fM0 , rM0 

defined in section II and fM-r have a common bound N to the number of lheir 
boundary points. 
( 1) There is a one to one correspondence between the set rM0 u ,E.M0 and the 
subgame perfect limit equilibria payoffs of G""' in which the accepted proposal is 
Joan's and between the set r10' and the limit equilibria payoffs in which the 
accepted proposal is Mary's. Jj_M0 = ll'o so these limit equilibria payoffs are the 
same except that they are proposed by Mary instead of Joan. Only these equilibria 
have the property that the accepting player can propose the payoffs herself. In the 
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other cases the players will agree that the player making the equilibrium proposal 
should begin the game. If both sets are empty each of the games G00 and G°"" is 
worth (UR, VR)· 

(2) If rMo u E.Mo is a singleton and rJ0' is empty, the game is equivalent to a 
principal agent game in which Joan proposes; both players agree she should start 
the game and she obtains a payoff f(vR)- The symmetric statement holds for 

Mary. ♦ 

We give some examples of the application of these results in sections ill and 
N, before proving them in section V. 

Negotiation when there is a value of equality 

We suppose that in the infinitely repeated ultimatum game, both players have the 
moral belief that the resulting distribution should be equal. To represent such 
players we need a description of normative behavior. Garcia-Barrios and Mayer 
(1996) introduce the concept of a postconventional agent whose nonnative behavior 
depends on the context and may be influenced by payoffs, and thus may have 
various degrees of moral strength. Their theory is based on Tapp, Gunnar & 
Keating's (1983) characterization of the development stages of normative reasoning 
and on the theories of psychological congruence (Heider, 1958, Festinger, 1957, 
1964). They use these concept to explain the behavior observed in experimental 
ultimatum games and predict some additional behaviors.1 Here we apply their 
model of agency to the infinitely repeated version of the full ultimatum game, which 
includes the possibility of the responder punishing the proposer at a certain cost 

We suppose that Joan plays with Mary a repeated ultimatum game with 
punishment (Figure 3). When Joan makes a proposal, she offers Mary a share sM 
which implies she remains with a share s1 = 
1 - sM. Joan knows, however, that if Mary accepts she may impose a punishment 
for unfair proposals which consists of removing lix units from Joan• s share at a 
cost of x units of her own share. Joan• s proposal set is therefore 

Kl = { (s1 - 6x - D1(sM - x - sl + 6x), sM - x - DM(sl - 6x - sM + x)) : O,; s1 ,; I) 
while Mary's is 

KM = {(sl - x - IY(sM - 6x - sl + x), sM - 6x - DM(sl - x - sM + 6x)) : 0;; sl;; I) 
where 

1In the case of the single-shot ultimatum game. if the players only care for the monetary 
payoffs., game-theoretical analysis predicts a subgame perfe.ct equilibrium in which the 
responder will accept any share offered by the proposer, who will offer the smallest unit of 
cwrency available, Furthermore, the responder's threats to reject any other offer will not be 
credible. However, the following conducts .have robust empirical support (see Kahneman, 
Knetsch and Thaler, 1986 and Camerer & Thaler, 1995): 

(a) Usually, individuals playing the role of proposer will offer a larger share than 
pre<licred. 

(b) Individuals playing the role of responder will usually be reluctant to accept 
positive offers which imply a very unequal and therefore unfair distribution. 

(c) Responders will be willing to pay a cost for punishing IDlfair offers. 
(d) Proposers may take advantage of information asymmetrie.s to in~ their share (appearance 

of fairness is enough). 
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DP(n=ct~(T) if T,:O, DP(T)=df(-n if T:,0, Pe (J,M), 
and 

dp dp, dp,, 0 ' 0 I 
i • i • i > • I= • · 

D'(n and DM(n represent the cognitive dissonance that each player feels when the 
outcome is unfair, where Tis how much more the other player's payoff was then 
the player's own, after punishment If T > 0 the dissonance represents the 
emotional discomfort arising from the other player having obtained a larger share, 
while if T < 0 it represents the discomfort arising from having obtained a larger 
share than the other player. These need not be the same. 

Theorem 2 Proposing a share so unfair that the other player will be provoked to 
punish will be counterproductive. Each player has a maximum level of unfairness 

she will tolerate without punishing. Mary's is: 'If = 0 if dr'(O)" (o - I/; 

otherwise 1t' = min{T, 1), where T solves df(n = (o - 1r' (the maximum level 
of unfairness is 1; Joan's maximum tolerance for unfairness is similarly defined by 

changing M for J). If 1t' = 0 we say Mary has a strong character, while if 'If > 0 
we say she has a weak character. Each player may have a maximum level of 

unfairness she is willing to impose. Joan's is: sl = .1 if d~'(O) ~ l; otherwise s! = 
2 

min{s, I) wheres solves dt'(s) = 1 (for Mary's change J lo M). Ifs! = 1. we say 
2 

Joan is morally strong while if~ > 1. we say she is morally deficient. Thus the 
2 

maximum shares that Joan and Mary can propose for themselves with advantage is: 

I · l+1t' J M · !+Ts M SMax=mm{ 
2 

,s+}.SMax=llllD{ 
2 

,s+J, 

and correspondingly the minimum share they will obtain in proposals from the 
other player is: 

sifin = 1 - S~ax ' st'lin = 1 - sifax• 
There is a unique solution to the negotiation problem, which occurs between these 
extreme feasible values (see Figure 4 for a graphic example). Since the proposals 
do not provoke punishment, the player's proposal sets reduce to the same proposal 
sets, and f and g are inverses in the interval of feasible values. The negative 
elasticity off is a decreasing function of Joan's share s1. Let 

(1- 2dr(O))(l - 2d{'(O) (1 + 2dr(O))(l + 2~
1
(0) 

e,= ,£2= ). 
(1 + 2d{(O))(l + 2cJt''(O) (1- 2~(0))(1 - 2ctr'(O) 

The solution occurs at sJ = !. if 
2 

a/f} E (Et,£,); 

it occurs on [sMin• !.) for smaller and on (!., sl.1axl for larger values of a/l3. The 
2 2 

extreme point s:.,.ax is not reached if Joan's limit to a large, unfair share is self­
imposed, and conversely for the point s'/..tin• ♦ 
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The main resu]t of this theorem is that it constructs the rule of sharing by half. 
It is clear that players who are morally strong or have strong characters will share 
by half. In these cases the feasible proposals reduce to the point (1., L). But the 

2 2 

theorem implies that for a range of comparative impatiem .. -e aft3. even players who 
are morally deficient and have weak characters will share by half. This will happen 
because treating the other unfairly involves dissonance for both players. One feels 
bad because she tries to get more than her fair share (but not necessarily bad 
enough not to do so if she were a principal agent) and the other feels bad because 
she is being cheated (but not necessarily bad enough to pay for punishing the 
other). These feelings on their own or combined imply that when the players 
negotiate they stick to the proposal (!.., l.) unless one player is that much more 

2 2 
impatient than the other. 

Duopoly 

We consider some examples in which a market is supplied by two firms which are 
deciding how much to produce. Together the firms face a given demand q = D(p), 
where q is the total quantity demanded and p the price. The firms have production 
costs (including capital costs) given by functions C;(q;), where q; is the quantity 
produced by Finn i, i = 1, 2. To analyze a situation analogous to Rubinstein's 
negotiation game, but not necessarily consisting of actual negotiations, we suppose 
that the firms are in a planning stage at which their actions fully announce their 
intended output. If Firm 1 plans to produce Q1, Firm 2 takes this as a proposal and 
signal acceptance by taking actions to produce a quantity q2 which maximizes its 
benefits when taking Firm 1 's production as given. Let 

II,(q,. q,) = pg, -C,(q1), n,(q,. q,) = pg, -C2(q2). where p = D·1(q 1+q:z). 
be the profits of each firm when the price is p. Let 

q;(q1) = argmax(Il2(q1, q2) subject top= o·1(q1+q2)). 
Then when Finn 1 plans to produce q1, Finn 2 accepts if it produces 

Q ( ) q;(q1) if Il2(q1, q;(q1)) ,;, 0, 
2 41 = 

0 if Il2(q1, q;(q1)) < 0. 
If instead of accepting Finn 1 's proposal Firm 2 takes actions to produce a differenL 
amount q2, Firm 1 may reconsider its plans and take different actions accordingly. 
We assume that while the firms have not reached an agreement (so one finn has 
accepted the other's proposal), the delays cause a discount which covers the costs 
of the actions taken and the delay in the profits of the en1erprise. In the language of 
our negotiation game, Firm 1 's proposal set is 

K1 = {(Max{II1(q1, Q,(q1)), 0), Max{Il2(q1, Q,(qi)), 0)): D·1(q1+Q2(q 1)) > 0) 

• 
where the firms do not participate if their profits are negative. We can similarly 
defme Q, and K2. 

We give three examples to show the kinds of results which can be obtained by 
using the negotiation model. These results are shown in Figures 5 to 6, which are 
in each case the graphs of the sets K I and K 2, obtained by computer calculation. In 
these figures the axes are omitted, since they contain some relevant parts of the 
sets, and the sets has been slightly displaced for purposes of distinction. The 
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functions f and g and the negotiation equilibria in each figure can b~ obtained by 
inspection from the graphs of K I and K2 respectively. 

The indirect demand function used in each example is p = 2.0 - 0.5 q. 

Example 1. The firms have production coslS 
C,(qi) = 0.1 + 0.045 q1, C2(q2) = 0.4 + 0.01 q,. 

There are two perfect equilibrium given in Figure 5 by points A and B. To see that 

B is an equilibrium observe that for small t, 0 e S2-c (writing 2 instead of M for the 

second player) because O e P2, f(O) ;, 0, and µg(pf(O)) = 0. This holds 
independently of whether f(O) is identical to u+. This means that even if profits are 
slightly different for Firm 1 if it announces production at the optimal monopoly 
level before Finn 2 makes any ahnouncement. then if it does so after Finn 2 
announces zero participation, B is still an equilibrium point. 

Example 2. The firms have identical production costs 

C/(q,) = Min[O.l + 0.50 q;; 0.5 + 0.05q;) 
which represent a production function in which for larger scales a technology 
offering substantial savings is available. The equilibria are given in Figure 6 by 
points C and E (similar to point B in Example I), which represent monopoly 
production by one of the firms, using the larger scale technology. Point D, a 
Coumot equilibrium in the sense that each Firm is maximi:ting profits given the 
other firm's level of production, is not an equilibrium because it is not a lower 

boundary point of the sets l:Mo, l'o. 

Example 3. The finns have identical production costs 

C/(q;) = Min[0.50 q;; 0.5 + 0.05q,J 
which represent the same production function as in Example 2, except that the 
lower scale technology has zero fixed costs. The equilibria are given in Figure 7 by 
points F and H. In each case one of the firms uses the large scale technology and 
obtains larger profits, while the other uses the low scale technology and has lower 
profits. Point G, again Cournot, is not an equilibrium for the same reason. 

The general two.agent negotiation game 

We solve for the subgame perfect Nash equilibria of the game G"" introduced in 
section II. 

Consider such a perfect equilibrium of G°". Since the game is identical at each 
occurrence of 01 or GM, so is the maximum current value of the game. Therefore, 
to avoid the discount in utility, both players will end the game at the first 
opportunity. This means that the game ends at the first occurrence of QI or QM. 
Therefore we need only explore strategic situations involving sequences of payoffs 
which are stationary for the proponents. Thus, let (u1, v,), ... ("4, v4), be 
equilibrium proposals in the first to fourth periods. Then u3 = u1 and v2 = v4 • 

However, we cannot assume v3 = v1 or 04 = u2. 
Let the set of responses to proposals be { a, r, u}, meaning "accept", "reje-<.:t" 

and "opt for reserve utility". In equilibrium the players will accept proposals if they 
are worth more than the present value of the game if they reject or take their reserve 
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utility. Mary's strategy for responding to proposals in ()J, is a function .pM: ()1 ➔ 
{a, r, u}. If the present value of the game when Mary decides to reject to make a 
proposal is u, Mary's response strategy is 

,pM(u1, vi)= a if Vt ;, max(u, va}, 

cpM(ui. Vt)= r ifu > max{v1, VR}, 

4>M(u1, v1) = u if max{ vi, 'U} < VR, 

If u ~ VR the strategy u is not used and the relation between u and Vt determines 

the response, while if u < YR it only depends on the relation between Vt and YR. 

Thus we can first study the value of the game when the players do not have the 
reserve utility as an option. Mary uses the strategy 

,pM(u1, v1) = a if Vt <! 1.l, 

,pM(u1, v1) = r ifu > v1; 
Joan uses the analogous strategy 

<l>'(u2, v2) = a ifu2;, m, 

<1>'(02, v2) = r if m > 02, 

where in equilibrium if Mary accepts a proposal (u1, v1), u = v1 and co= pu1, 
because Joan would abandon her proposal u 1 if she knew she would receive a 

proposal worth m'p in the next round, while if Joan accepts a proposal (02, v2) m = 

u2 and u = µv2. 
Given these strategies, what is Joan's optimal strategy in the case in which she 

makes a proposal which is to be accepted? Although Joan and Mary have 
announced strategies co and u, they still examine the possibility of deviating to 

obtain a better payoff. Consistency will give us the equilibrium conditions for co 
and u below. We characterize the set of proposals (u1, v1) which Joan can make 
yielding her u1 and which Mary will accept. These proposals will end the game in 

the first period. Mary accepts an offer v1 ~ u if in period 2 when she makes a 

proposal she cannot obtain v2 > (1/µ)v, and still offer Joan 02;, pu1 ;, m (both 
inequalities are derived from the principle that Joan will accept an offer only if it is 
worth more than the value of the game if she rejects). In other words, Mary will 
accept a proposal if (a) v1;, u ; (h) pu,;, m; and (c) if 02;;, pu1 is a feasible 

proposal for Mary, then g(u2),; (1/µ)v,. (c) is equivalent to g(pu,),; (l/µ)v 1 
because g is decreasing. We shall refer to conditions (a), (b) and (c) throughout the 
paper. The set of these proposals is 

0 1 = ((01, v1) e K' I VJ 2' ll, pu1 2' m, and µg(pu1),; Vt}. 

This is the set of proposals available to Joan which give her at least mlp and which 
Mary cannot Pareto improve. 

Define QM symmetrically to 01. We analyze now the process of maximization 
within the proposal set~ ()J and QM. First observe that (u1, v1) e ()J ~ 3 vi'~ v1 : 

(f(vt'), v1') = (f(v1), vt') e or (because of the inequalities f(v1') = f(v1);, u1 ;, 
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co/p, µg(pf(v1));:; µg(pu1);:; v1 ;:; vt'), and that f(v1) is the maximum value that 
Joan can obtain if she offers v1 to Mary. Therefore finding the maximum value for 
Joan among the proposals 01, 

U*1 = max{u1 I :I v1: (u1, v1) e QJJ, 

is equivalent to finding the maximum value in the subset of proposals 

o1 = {(f(v), v) e Kl I v1 "u, pu1 "m, and pf(v);:; ut => µg(pf(v));:; v), 
Let 

SM= {v e [t>, v+] I pf(v)" co and pf(v);:; u+ => µg(pf(v)):, v). 
We continue referring to the three conditions for v to belong to SM as conditions 
(a), (b) and (c). Note that although this set still refers to Joan's strategic proposals, 
we have indexed it with M bec-tuse it is a set of payoffs for Mary. From the 
definition of SM it follows that 

ol = {(f(v), v) Ive SM} 

and 
u• I = f(inf(SM)). 

The following Proposition proves that if SM is non-empty. then it is closed 
below. 

Proposition 1 Suppose that SM ¢. 0 and let vo be any lower boundary point of 

SM (that is, '<;IE> 03 v e SM: v0 ;:; v < v0 +E and3 e> 0: (vo- E) ()SM= 0). 

(I) v0 e SM. 

(2) Ifvo > t> then µg(pf(vo)) = vo. ♦ 

Let 

Proposition 1 implies 
U* t = f(v* 1). 

To obtain this value Joan can make a proposal (U* 1, v• 1) in which she can choose 
any 

v•1 e cf>M = {v e [v*1, v+J I (U*1, v) e Kl). 

cJ.>M consists of those values that Joan can offer Mary while still obtaining U* 1. 
cJ.>M has the following properties, which guarantee that these values exist and are in 
SM. 

Proposition 2 Suppose SM ,. 0. 
( I) cf>M,. 0; 
(2) cf>M i;; [v*1, v+tJ i;; SM, where v+1 = sup {v e [v*1, v+] I f(v) = f(v\)), and 

v+1 e cl>M.+ 

We analogously define S1 to analyz.c Mary's proposals: 

SI= {u e pl I µg(u);;, t> and µg(u);:; v+ => pf(µg(u));:; u). 
where 
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pl= [Ol, u+]. 
As in the case of Joan, we define 

u#2 = inf(S1), V#z = g(u#z), 

<1>1 = {u e [u#z, u+] I (u, V#z) e K1). 

where the symbol # denotes current values. The following Propositions are 
equivalent to Propositions 1 and 2. 

Proposition 3. Suppose that S' ;, 0 and let u0 be any lower boundary point of 
S'. 
(1) uo e S1. 

(2) If uo > ro then pf(µg(uo)) = uo. ♦ 

Proposition 4. Suppose that S1 "F- 0. 
(1) <I>';, 0; 
(2) <1>1 !:; [u#z, u+z].; S1, where u+, = sup {u e [[u#z, u+J I g(u) = g(u*z)}, and 
u+2 e <1>1. 

If Mary can make an offer in the second period which will be accepted by 
Joan, it will be (U#2, V#z), for some U#z e <l>1. The present value of this offer in 
period I is: (U*z, V*z) = (pU#z, µV#z). Summarizing, the optimal proposal for a 
player if the other is to have a given response is in Table 1: 

a r 
(u1, Vt)= (U* !, v• 1) (Ut, Vt) !! ()1 

given response. 
other player s 

Since some proposals are made for the other player to reject them and make her 
own, we define the concept of declining. 

Definition 4 Joan (respectively Mary) is able to decline if the set K1 \ 01 
(respectively KM I ()MJ is non-empty. She declines if she makes a proposal in this 
set. ♦ 

Since if Joan makes a proposal which Mary accepts it will be one of the 
proposals (lJ* 1. V* 1). V* 1 e <l>M, while if she declines the result does not depend 
on which proposal in K1 \ O' she uses, we shall abbreviate making a proposal with 
P, declining with D. We use the same notation for Mary. 

Table I implies that a player's response to Pis a (accepting the offer) and to D 
is r (rejecting the offer to make a proposal). If a player responds with r then her 
proposal will be P or D. Therefore, when it is their turn to make a proposal in a 
perfect strategy, the players choose among the strategic options P, D, and when 
they receive a proposal D, they choose between the responses P, D (meaning r 
followed by P or D). Therefore if the game begins with Joan, the extended form of 
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G"" reduces to G', while if it begins with Mary it reduces to G0 (see Figure 2). In 
each case it is understood that the option P only exists if the corresponding set SM 
or SJ is non-empty, and the option D only exists if the corresponding player can 
decline. Since the subgame perfect equilibria of G"° are those which arc Nash 
independently of the node at which the game starts, we consider the Nash equilibria 
of the games G' and G0

, which correspond to starting at nodes 1 and 2 (see Figure 

1). Considering games played beginning at nodes of types 1' or 2' does not add 
further restrictions since each player responds to the given proposal according to 
whether it is of type P or D independently of whether it is optimal for the 
proponent. 

Observe that Joan may have the strategy of offering (U"'1, V*1) in the first 

period and (U* 1, V* 1 ') in the second if the set V has more than one element, while 

Mary may similarly offer (Ul/2, y#2) in the first period and (U#2', V#2) in the 
second if the set U has more than one element. These strategies do not obtain better 
payoffs for the proponent but may make a difference to the comparisons of the 
other player. However, since the game ends in the first two periods only Joan's 
second proposal can make a difference. 

The nonnal forms of G' and G" are given in Tables 2 and 3. 

P (S1;, 0) D (QM;, KM) 

P (SM;, 0) (U--.-1, V 1) (U"1, V"1) 

D (QI;, KJ) (U"2, V"2) (0, 0) 

Table 2. Normal form of the game G'. 

P (SJ;, 0) D (QM ;,KM) 

p (SM;, 0) (U•2, v•2) (p2U* I' µ 2y• {) 

D (QI;, KJ) (U 2, v• 2) \V, U) 

Table 3. Normal form of the game G". 

The following lemma describes how the sets SJ, SM are interrelated from the 
strategic point of view. First, only one of the players may have proposals which the 
other cannot Pareto improve (Pareto unimprovable proposals); this player will 
dominate the negotiation game. Second, if both players have such proposals, then 
there are two cases. In case A each player prefers her own Pareto unimprovable 
proposals, and in case B each player weakly prefers the other player's Pareto 
unimprovable proposals. The inequalities will be used to find the Nash equilibria of 

games G' and G". The definition provides nomenclature for the lemma. 

Definition 5 In what follows we shall say that the values u1, u2, v1, v2 form a 

quadruple if v1 e SM, 01 = pf(vi), 02 e SJ, v2 = µg(u,). ♦ 

Lemma 1 
( 1) Suppose that only one of the sets SJ, SM is non-empty. 

( 1.1) If SJ= 0 and SM;, 0 then pf(v\);, Ol => v*1 = u. 

II 
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( 1.2) If SM= 0 and sr ,o 0 then µg(u#2) 2' u => u#2 = ro. 
(2) Suppose that both sets S1, SM are non-empty. 
(2.1) Let u1, u2, Vt, v2 be a quadruple of values. Then 

Ut S: ll2 ¢:::> Vt ~ V2. 
(2.2) The conditions 

3 u, e sr, Uj e pf(SM): u, > u,, 

(A) 

3 v1 e SM, v2 e µg(S1) : VJ < v2, 
imply each other and imply 

pU* t > u#2 and µV#2 > v* t• 
(2.3) In the case opposite to (2.2), that is, if one of the hypothesis 

pf(SM);; S', 

(B) 
µg(Sl);; SM, 

holds (they imply each other) then 

pU*1s:u#2 and µV#2~v*1-
/2.4J If hypothesis (A) hold, then 

pU*1 > U#2 ;eu#2 and µV#2 > v•,;, v*,, 
(2.5) If hypothesis (B) hold, then 

pU* t S: u#2:::;; U#2 and µV#2 S: v*t S: V* t• 
(2.6) Summarizing, 

p2U* I > u• 2 <a> v• I < v• 2 <a> hypothesis (A), 

p2U* 1 ,; U* 2 <a> v• 1 2' V* 2 <a> hypothesis (B). 

( 3) In the cases when ro and u are consistent we have: 
(3.1) Assume pU* 1 = ro, v• 1 = u. Then SM= [U, v+1]. Either µg(ro) < u and S1 = 

0 or µg(ro) = u and S1 = [ro, u+:,]. 

(3.2) Assume v*2 = µV#2 = u, U*2 = µU#2 = µro. Then S' = [ro, u+2]. Either 

pf(u) < ro and SM= 0 or pf(u) = ro and SM= [u, v+1]. 
( 3.3) If either one of the consistency assumptions hold, and both of the sets SM, S' 
are non-empty, then pf(u) = ro, µg(Ol) = u, and V* t = V* 2 and U* 1 > U* 2- ♦ 

We define now some additional strategic set 

Definition 6 Let 

0 1 = ((u1, vi) e K1 Iv,;, VR, u,;, UR, and µg(pu,),; vi}, 

l;M = (v e [vR, v+] r, K1(v) I f(v) 2' UR and pf(v),; u+ => µg(pf(v)),; v}, 

EM= {v e LM I µg(pf(v)) = v}, 

rM = {v E l;M I [µ2v, v) r, l;M = 0). 

12 
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E)M, V, .51, r1 are defined symmetrically. ♦ 

The set rM is a subset of the lower boundary points of EM. Since I;M c: SM, 
some of these may be lower boundary points of SM, which have be.en characterized 
in Proposition 1(2). We characterize the remaining points. 

Proposition 5 Let v e rM. If v > u then either µg(pf(v)) = v or vis on a 

segment containing [µ2v, v) on which f is constant. ♦ 

As will be understood from the Lemma below, 0 1 is the sets of Joan's 

proposals which in principle may be accepted. I;M represents the region of the 

efficiency boundary on which Joan is weakly dominant. .SM represents those 

proposals of ~ at which Joan locally maximires her utility and which Mary can 

replicate. rM represents those points of I;M at which there are no nearby proposals 

which can give Mary an incentive to deviate from her response strategy u. We 
examine the perfect equilibria of o-. 

Lemma 2 Suppose Joan (respectively Mary) has the strategy to accept if offered 
at least Ol (respectively u), otherwise to reject and propose (U* 1, v• 1) (respectively 

(U#,, V#2)). If the payoffs of G' are (U* 1, v• 1) then consistency means pU*i = 

m and V* 1 = u. These are better than the reserve utility if m?: uRIP, u ~ VR. If the 

payoffs are are (U*2, V*2), then consistency means U#2 = m and µV#2 = u. These 

are better than the reserve utility if m ~ UR/µ, u?: VR. We will assume in each case 
that the strategies are comist.ent with the payoffs and that these are greater than the 
reserve utilities. 
(1) If both sets S1, SM are empty, the value of the game is (0, 0). 
(2) If just SM is non-empty, (P, D) is the only strategic combination which is 

Nash in the games G' and G". It has payoffs (U* 1, V* 1) in G'. The players do not 
have incentives to deviate to lower response values when beginning the game at any 

of the nodes 1' and 2', that is, when responding to any proposal, if and only if V* 1 
E rM. 

(3) If just S1 is non-empty, (D, P) is the only strategic combination which is Nash 

in the games G' and G". It has payoffs (U* 2, v• 2) in G'. The players do not have 

incentives to deviate to lower response values if and only if u#2 e P. 
(4) If both sets S1, SM are non-empty, an equilibrium in which neither player has 
an incentive to deviate from the response strategies only exists under hypothesis B 
with the properties pf(u) =ro,µg(ro) =u, v•1 =V*2, u•1 > u•,;, p2U\, v•, e 
.SM, V*2 e .51_ There arc two cases. 

(4.1) V*2 ~ µ2v* i'- (P, P) is the only sLrategic combination which is Nash in the 

games G' and G". It has payoffs (U* 1, V* 1) in G'. The players have no incentives 
to deviate from their response strategies. 

13 
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(4.2) V*2 < µ2v* 1'. Consistency means pU* 1 = co and V*1 = u. The players have 

no incentives to deviate from their response strategies if and only if V* 1 e rM. ♦ 

Summarizing: 

Theorem 3 
(1) Let fl'= (u E fl I µg(u/p) e EM). 

There is a one to one correspondence between the set rM u SM and the subgame 

perfect equilibria payoffs of G"" in which the accepted proposal is Joan's and 

between the set rP and the equilibria payoffs in which the accepted proposal is 
Mary's, except if both sets are empty in which case the games is worth (uR, YR). 

(2) If 1:1 is empty and rM consists of a single point (this is a consequence if f is 

decreasing), then G00 is equivalent to a principal agent game in with Joan as 
principal (sec Table 4). 

Here U* 1 = f(vR). 

Ip I (U'1, Y'i) I 
Table 4. When 1;1 = 0 and rM is a singleton 
the game reduces to a principal agent game. 

( 3) If l:M is empty and r1 consists of a single point (this is a consequence if g is 
decreasing), the game takes the form 

p u 
u (U•,, Y*2) (UR, VR 

u (UR, yn\ (UR, Y• 

Table 5. When 1;M = 0 and fl is a singleton 
the game reduces to a principal agent game 

only if U* 2 ~ UR and y+ 2 ~ YR. 

Here V* 2 = g(uR). In this game Joan can take her reserve utility or decline (by 
malring any proposal) and play a game in which Mary is a principal agent Joan will 
decline only in the unusual case u• 2 .: uR, and then Mary will reject to offer (U* 2, 

V* 2) only if V* 2 ~ VR, This situation is non-trivial only in special cases in which 
Mary's best strategy for herself does not imply offering the reserve utility to 
Joan.+ 

The negotiation game can become a Principal Agent game 

As Theorem 3 shows~ when the first player has a Pareto improvement over any of 
the other player's proposals, the negotiation game becomes a principal agent game 
in her favor. We complete the study of this case by letting the players decide who 

makes the first offer. Let G00
' be the game G00 with the roles of the players 

interchanged, so that Mary makes the first proposal and let H be the game with 
normal form 

14 
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Mary wants Joan Mary wants to 
to begin begin 

Joan wants 
begin 

to playG= (UR, VR) 

Joan wants Mary (UR, VR) playG= 
to begin 

Table 6. Nonnar 1orm or the game H. 

The game H, which is played instantly (without causing a discount in utility), 
consists of deciding who makes the first proposal in the negotiation game. If both 
players agre.c (they issue their decisions simultaneously) then the corresponding 
game is played. If they disagree, then they each obtain their reserve utility. We have 
the following theorem. 

Theorem 4 If LM is empty and r1 consists of a single point or if LJ is empty and 

rM consists of a single point then Joan and Mary agree on who should make the 
first proposal. In the first case Joan begins and H is equivalent to the principal 
agent game shown in Table 5, while in the second Mary begins and H is equivalent 
to the game in Table 7 (in which case if Mary's proposals are sufficiently 
productive, so µg(u#2);, VR, y#, = g(uR)). ♦ 

la . l~u#t' y#t) I 
Table 7. Outcome OH Wen 

only s1 is non-empty. 

The outcome when p andµ tend to zero 

In the general the strategies of the game H reflect the coordination problems present 

in games G= and G=, because of the possibilities of multiple equilibria. Instead of 
examining these cases we prefer to follow Rubinstein and examine what happens 

when we set p = e-a't, µ = e-1-lt and let t tend to z.ero. Write a suffix 't on each of the 

strategic sets we have defined for the case t > 0: SM't, 0J't', etcetera. The limit 

equilibria are given by the limit sets of rM't u SM't and rI\. Recall Definitions I, 2 

and 3. We calculate these in the non-pathological cases in which the sets EM0, EMo, 

FMo, rMo defined in section II and f"M't have a common bound N to the number of 

their boundary points. Further, we shall need the limits of the sets <l>M,, <I>', 
defined above (see Propositions 2 and 4). 

Definition 7 Let <f>Mo (respectively <l>'o) be the set of points each of which is the 
limit of some sequence of points U-c e CllM't (respectively v't' e <f>J-r). + 

The fo1lowing lemma establishes the conditions for Joan to have a proposal 
which Mary will accept in a limit equilibrium in terms of the properties off and the 

15 
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sets ~o. EM0, fM0, rMo. The analogous statements hold for Mary's proposals. 

The lemma is applied in the proof of Theorem 1. We shall say tt'(v) satisfies a 
property arbitrarily near on the left (right) of vo if v < vo can be found for which the 
property is true arbitrarily near vo. 

Lemma 3 
(I) If v e I;Mo, and f(v) > UR if UR > 0, then for sufficiently small t, v e Vt,.. 
(2) H v e fM0, then for sufficiently small t, v ~ I:M,.. 
(3) The maps f: EMo ➔ E1o, g: E10 ➔ EMo are inverses where the composition is 
defined. If vo is an interior point of EMo f is continuous at vo, 

( 4) Let Uo ; f(vo) and suppose that 11o and vo are interior points of E1o, EMo 
respectively, and that f has a continuous first derivative at vo. ff there are values 

Ut, v-. tending to no, vo as t tends to zero satisfying U,: = p,:f(v-.), V-r = ~g(u-r) then 

f"(vo) ; a.!B and equivalently g'(uo) ; 13/a. 
For the remaining points suppose that f and g are in the PCl class of functions 

and that the sets I;M 0 , EM 0, fM 0, rM0 defined in section II and rM1: have a 
common bound N to the number of their boundary points. 

(5) Suppose for all small enough t, v-r e rM-r u SM-r• Then the limit v0 =lim-r-+0V-r 

exists and is in the set f"Mo u EMo. 

(6) Leth(<, v); µg(pf(v))/v. Then 

h(<, v) ; h(O, v)exp[Lt ( - B + ag'(pf(v))}d<J. 

(7) Suppose v0 satisfies LHCI. Then :i;M, r, (vo-E, e1(p·1f(vo))); 0 for small 

enough t. 

(8) Suppose vo satisfies RHCI. Then :EM, r, [vo, vo+E);, 0 for small enough<. 

(9) Let voe EMo. There exists an£> 0 such that for sufficiently small values oft 

there are points V-r ➔ vo which are the infimae of l:M-r ri I, where I= (vo-£, v0+e), 
if and only if v0 satisfies one of the left hand and one of the right hand conditions. 

(10) If vo e f"Mo I Ehlo then vo is the limit of a sequence v, e rM,. 

( Il) <f>Mo >' 0; 
(12) <f>Mo ~ [v*, v+1Jl.s:; EMo_u l:Mo, where v+,; sup (v e [v*, v+J I f(v); 

f(v* 1)}; v+, e <f>Mo. 

(13) The direct definition <f>Mo; (v e [v*, v+J I (U* 1, vR) e K'}, which does not 

pass through the Jimit process, holds if v* e rMo or if v"' is an interior point of 

EMo. ♦ 

We have not calculated the set <J>Mo in the case where v* is a boundary point 
of EMo.at which f has a constant portion. This involves examining the path of 
convergence of v* and is not complicated in particular examples. However, the 
calculation in general involves enough cases not to be warranted here. 

16 
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The reserve utility and the Nash Product 

In the case where the negotiation equilibrium occurs in the interior of EMo al a point at 

which f'(vo) = a/~, Binmore (1994 section 5.5.6) shows that the equilibrium can be 
seen as occurring at the tangential intersection of the efficiency set with a level set of 

the Nash product NP = (u - no)0 (v - vo)P. no and vo are not defined there but are 
sometimes referred to as "points of conflict". and others as "reserve utilities". 

Note in the first place that negotiation equilibria in general need not occur at 
some point at which the Nash product is maximized. In our results. equilibria are 
first explained by Pareto dominance and then by the relative impatience of the 

players as expressed by the quotient WI}. which only distinguishes proposals in 
cases in which neither of the players has Pareto dominance. Thus perhaps the best 

interpretation of the quotient cx/f} is a purely economic one relating to each players' 
surrounding context (as the rate of return of alternative projects) or time 
preferences. rather than as an index of power, whose effects should be understood 
as intervening in the proposal set,;;. 

If the function NP represents some kind of social welfare function which is the 
result of the relative power of the players. uo and vo represent levels of utility each 
player is prepared to the death not to accept They are never reached as the result of 
negotiation. Thus they cannot represent the behavior associated with reserve utility. 
If negotiation cannot overcome the tiny loss of utility near these values, implicitly a 
large amount of power must be used to prevent the realization of these "points of 
conflict". But such power must cost. and therefore the original utility units are not 
representing the psychological or economic costs involved. This again supports the 
notion that power and preferences must be reflected in the proposal sets. 

Final Remarks 

We have shown that Rubinstein's negotiation paradigm can be extended not only to 
consider non-convex Pareto efficiency sets but efficiency sets originating in 
arbitrary (compact) proposal sets in which different regions belong to different 
players. The concept that underlies the logic of this Paradigm is the concept of 
regions of Pareto dominance. In our results. equilibria are first explained by Pareto 
dominance and then by the relative impatience of the players as expressed by the 

quotient a/f}, which only distinguishes proposals in cases in which neither of the 
players has Pareto dominance. 

In some additional equilibria. discontinuities in the efficiency sets allow the 
weaker player to maintain a perfect equilibrium with higher utility than she would 
achieve if the Pareto dominant player maximized her utility in the connected 
component of the Pareto region in which the equilibrium proposal is found. 
However these equilibria do not have the property that the accepting player can 
propose them herself. This concept may be added to the subgame perfect concept to 
eliminate these equilibria in contexts in which they are thought to be unrealistic. 

In some case the multiple equilibria would disappear in a wider game with 
more players in which one of the negotiating player's demands for a higher payoff 
could be untenable. 1bis would be the case if there were many negotiating pairs in a 
context of demand and supply. In others the multiplicity of equilibria leaves the 
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door open for further characterizations of the agent's behavior, be they economic or 
psychological. An extension to the general case of our example of negotiation when 
the players have moral beliefs in equitable distribution would tend to reduce the 
number of equilibria. 

We have also shown some additional facts. If the efficiency set corresponds to 
one player's proposals, then the negotiation game becomes a Principal-Agent game. 
Conversely, if several agents, who are negotiating individually with a principal, 
organize, they may change their situation back to one of bilateral negotiation. In the 
case of such examples as duopoly, some of the Nash (or Coumot) equilibria 
become unstable in the context of a negotiation game (which may represent a 
sequence of actions or games rather than negotiation per se) and are not perfect 
equilibria. 

Finally, another implication of the existence of multiple equilibria is that 
negotiated solutions to problems of agreement are not always possible. It may 
happen that each player prefers her own or the other player's proposal. One or the 
other player will be the looser at any equilibrium, and one must interpret lhat 
negotiation breaks down. Some of these problems may be solved if a third party 
inserts them in a wider context or game, or, again, if some moral or legal principles 
of distribution (supported by the context) prevail. 

References 

Binmore, K. (1994). Teorla de Jue.eos. McGraw-Hill. (Translated from Fun and 
Games. A text on Grune Theory.) 

Festinger, L. (1957). A Theory ofCo~nitive Dissonance. Standford University Press . 
.,.,....---,-(1964). ConflicL Decision and Dissonance. Stanford University Press. 
Garcfa-Barrios, R. and Mayer-Foulkes, D. (1996) "Justice and Efficiency in 

Economic Relations: explaining collaboration and conflict in the finn and choice 
in ultimatum games." Docwnento de Trabajo, Divisi6n de Econom.fa, CIDE. 

Heider, F. (1958). The ~ho]o&Y of Interpersonal Relations. Wiley & Sons, Inc. 
Rubinstein, A (1982), 'Perfect Equilibrium in a Bargaining Model', Econometrica, 

SO(!), 97-109. 
Tapp, J. L., M. Gunnar & D. Keating (1983). "Socialization: three ages, three 

systems of rules." In Perlman, D. & C. Cozby (ed.l. Social PsychQ!o&y. Holt, 
Reinman and Winston Pu. 

Appendix 

The definitions, propositions, lemmas and theorems are numbered in the order of 
their presentation in the text. They are proved in their logical order. 

Proof of Proposition 1. 

(1) Let Vk be a decreasing monotonic sequence in SM tending to v0• (a) v0 E [ll, 

v•]; (b) since pf(vt) .em and f is decreasing, pf(vo) .em; and (c) if pf(vo) :Su•, 

also pf(v0 :Su•, so that µg(pf(v,)) :S Vk. Now, pf(vk) is increasing and bounded, 

so it tends to a limit limtpf(vk) :S pf(vo) and as g is left continuous, µg(pf(vo)) S 

µg(limtpf(vk)) S vo. 
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(2) Suppose vo > v. We first show that pf(vo) Su+. For if this is not true then for 
small enough 6, vo- 6 satisfies conditions (a) and (b), and also (c), since pf(vo -

6) ~ pf(v0) > u+. Thus vo- 0 e SM, contradicting the definition of vo. Next, as vo 
e sM implies µg(pf(vo)) s; v0, we show that the strict inequality cannot hold. 
Suppose for contradiction that µg(pf(vo)) < vo. For small enough 6, µg(pf(vo)) < 
vo - 6, and vo - 6 satisfies conditions (a) and (b). Now, if pf(vo - 6);; u•, 

µg(pf(vo - 6)) ;; µg(pf(v0)) < v0 - o, so (c) holds and vo - o is in SM. ♦ 

Proof of Proposition 2. 
(1) f(v*1) = U*1 => 3 v e [v*1, v+]: (U*1, v) e KJ and f(v) = f(v*1) = U*1, so 

that V E Cl)M_ 

(2) Since f is left continuous f(v+) = f(v* 1). It is easy to verify [ v* 1, v+i] s; SM. If 
v e Cl>M, f(v) ,e u• 1 = f(v* 1) because (U* 1, v) E K1, while f(v) ;; f(v* i) because f 

is de.creasing, so v e [v'"i, v+i]. ♦ 

The following lemma is of a technical nature, establishing relations of order 
among the values u• 1, u• 2, UR and V* 1, V* 2, VR, relations between properties of 
f and g, and the emptiness or non-emptiness of SJ and SM. It will be used in the 
proofs below. 

Lemma 4 
(1) f(vR) <UR=> SM= 0 and g(uR) < VR =>SJ= 0. 
(2) g(uR) ~ VR =>URS u+; f(vR) ~UR ⇒ VR S v+, 

(3) If both of the sets SJ, SM are empty then pf(vR) < UR and µg(uR) < VR­
(4) There exists the case in which SJ, SM are empty and 

pf(VR) <UR< f(vR) and µg(uR) < VR- (•) 
(5) There exists the case in which SJ, SM are non-empty, inequalities(•) hold, and 
u#2 > UR, v* I > VR. 

(6) Suppose U = {0#2) and f is continuous at V*2- Then if SM= 0 and SJ,;, 0, 
u• 2 ~ llR and v* 2 ~ VR cannot both hold. 
Proof 
( 1) This is clear. 

(2) g(uR);, VR => 3 (u,v) E KJ such that u" UR, v;, VR, so UR;; u•. The other 
implication is oblained similarly. 
(3)(i) We show that µg(uR);, VR and SJ= 0 =>SM,;, 0. Using (2), µg(uR) ,e VR 

and S1 = 0 => 3 u E [UR, u+J: µg(u),; v+ and pf(µg(u)) > u. We show that v = 

µg(u) is in SM. We already have: 

(a) VR;; v,; v+; (b) f(v) > (1/p)u 2' UR; and (c) if pf(v) ;; u•, we can apply g(•) 

obtaining µg(pf(v)),; µg(u) = v. 

(ii) The proof of pf(vR) < UR and SM= 0 =>SJ,;, 0 is similar. 

(iii) Therefore, if one of the inequalities pf(uR) 2' VR, µg(uR)" VR holds, at least 
one of the two setc; must be empty. 
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( 4) To construct an example it is enough to take continuous and strictly decreasing 
functions f and g (which can be considered as the boundaries of the sets K1, KM) 
with.the following two consistent properties: 
(i) pf(vR) > P"R· 
(ii) 

3 (u', v') E (PUR, DR) x (µvR, VR): µg(u') = v', pf(v') = u', 

u E [puR, u') => pf(µg(u)) < u while u > u' => pf(µg(u)) > u. 

By property (ii), u;, DR=> pf(µg(u)) > u, so that SJ= 0, while if for v e [VR, v+] 

we define u = pf(v), v;, VR => v > v' => u = pf(v) < pf(v') = u' => pf(µg(u)) < u 

=> µg(pf(v)) > v, so that SM= 0. On the other hand, puR < u' = pf(v')< pf(vR) < 

pf(v') = u' < UR and similarly µg(uR) < VR. The other inequality in(•) follows from 
(i). 
( 5) To construct an example we take continuous and strictly decreasing fwictions f 
and g with the following two consistent properties: 
(i) pf(VR) > PllR. 
(ii) 

3 (u,, v,) e (puR, ~) x (µvR, ~): pf(v,) = u1, µg(uJ = v,, i = I, 2, 3; 

PUR < U1 < U2 < llR < u3; µvR < V3 < V2 < VR < v1; 

u E [puR, u,) u (02, u,) => pf(µg(u)) > u 

while u e (u1, 02) u (03, u•) => pf(µg(u)) < u. 
The proof is similar to the proof of ( 4 ). 

(6) We have assumed u• 2 = pU#2 = pu#2. We first show that for small enough, 

> 0, u#2 - £ ~ UR and g(u#2 - £) :2: VR- The first of these follows by ao;;sumption, 
while g(u#2 - £) is close to V#z = v* ifµ :2: VRIµ > VR, so the second must hold. But 
therefore, since u#2 - , I! S', µg(u#2 - £),; v+ => 

pf(µg(u#2 - r)) > u#2 - e Since f is continuous at v• 2 we obtain v• 2 = µg(u#2) ,; 

v+ => pf(µg(u#2)) > u#2 => µg(pf(V*,)) S v*,. It now follows that v•, e SM, 

since (a) is true by assumption, (b) is f(V* 2) = f(µg(u#2)) > (l/p)u#2 .e DR, and (c) 
has been proved. ♦ 

Proof of Lemma I 

( 1.1) By assumption v* 1 exists and v* 1 ::-: u. Proposition 1(2) therefore implies v* 1 
= u or µg(pf(v* 1)) = v* 1- However, if the later is the case, then if u = pf(v* 1) ~ 
m, it can be verified that u e S1, which contradicts the assumption S1 = 0. 
(1.2) This is similar to ( I.I). 

(2.1) Suppose u,,; 02. Then pf(vi) = u1 Su+, so that, as v1 e SM, µg(pf(v1)),; 
v1. Applying these inequalities, 

v, = µg(u2),; µg(u1) = µg(pf(v,)),; v,. 
The converse is proved similarly. 
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(2.2) Given the first condition there exists v1 e SM such that u1 = pf(v1), so we 
can define v2 = µg(u2), obtaining a quadruple with u1 > u2 and therefore v1 < v2, 
due to ( 1 ), which implies the second condition. Starting from the second condition 
we get a similar quadruple and the converse implication. Now, 

v* 1 : inf(SM),; v, ⇒ pU* 1 : pf(v* 1) ;, pf(v1) : u, > u2 ;, inf(S1) : u#,, 

u#2 : inf(S1),; u, ⇒ V*2: µg(u#2);, µg(u2): v2 > v,;, v* ,. 
(2.3) Each hypothesis (B) is the opposite of one of the equivalent hypothesis (A), 
so they are equivalent From the hypothesis one obtains directly 

pU* 1 : sup(pf(SM)) ,; inf(Sl) : u#2, 

µV#2: sup(µg(Sl)),; inf(SM): v• 1. 

(2.4) Suppose for contradiction that U#2 ;, pU* 1. As U#2 e '1>1, by Proposition 
4(3) the interval [u#2, Ull2] is contained in SI and g is constant on it. Also, by 
definition, pU*1: pf(v*1). Therefore, 

Applying pf, 

µg(u*,J : µg(U#2) ,; µg(pU* 1) : µg(pf(v* 1)),; v* ,. 

u#,;, pf(µg(u#2));, pf(v* ,) : pU* 1, 

pu• 1: pf(v• 1) :5 pf(µg(u#,)),; u#,, 
which contradicts (2.2). The proof of the second assertion is similar. 
(2.5) and (2.6) follow from the previous results and from u•,: pU#2, v•,: 
µV#,. 
(3) The assumptions in (3.1) and (3.2) are the meaning of consistency. 
( 3.1) It is clear that pf(ll) : ro and that v• 1 : ll. By Proposition 1(2) [ll, v+,J !:: 

SM. But v > v+1 ⇒ pf(v),; pf(v+1),; pf(ll): ro :> v E SM. Now, µg(m): 

µg(pf(ll)),; 1). Hence either µg(m) < ll, in which case for u > m, µg(u) :5 µg(m) < 
u, so SJ= 0, or µg(ro) = 'l>, in which case by the argument just done for SM, SJ= 
[m, u+2]. 
( 3.2) This is proved similarly. 
(3.3) Using the above, v•,: 1l: v•, and u•,: mlp > µro: u•2. ♦ 

Proof of Proposition 5 
If v e fM and v > 1l then v e SM r, K1(v). If v e SM Proposition 1(2) applies. If v 

e SM\ K1(v), then as in the proof of Proposition 1(2), conditions (a), (b) and (c) 

hold for v - 6 if 6 is small enough, but 
v-6 E Kl(v). Hence f(v-6): f(v). ♦ 

Proof of Lemma 2 
(1) Neither player has a proposal the other will accept, so they both reject 
indefinitely. 
(2) If just SM is non-empty, (P, D) is the only strategic combination which is 
Nash in the games G' and G". It has payoffs (U\, V\) in G'. Consistency means 
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pU* 1 = co and V* 1 = u. The players also do not have incentives to deviate to lower 

response values when beginning the game at any of the nodes l' and 2', that is, 

when responding to any proposal, if and only if v* 1 e rM. 
(2) Only Joan can make a proposal which will be accepted by the other player. 
Hence (P, D) is the only strategy not leading to zero payoffs. Given Mary's 

response strategy, Joan cannot increment co, nor has she any incentives to accept 

less at node 2', since she can always reject and make her own proposal, which will 

be accepted. Mary will deviate from her response strategy u = V* 1 at node l' ~ 3 

(u, v) e 01 such thaL µ2V* 1 :s; v < V'"t ¢::> :3 (u, v) e .I;J such that µ2V* 1 s::: v < 
V*1 <=> V*1 e rM. 
( 3) This is similar to (2). 

(4) If hypothesis A holds, both players prefer their own proposal. Thus p2U*, > 

u• 2 > pro so Joan has the incentive to increase co so p U* 1 = pro, while v• 2 > v* 1 

> u so Joan has the incentive to increase u so v• 2 = u. Thus hypothesis B must 

hold. Besides we have the results of Lemma 1(3). To solve the games G' and G" 

we have two cases: V*2 ~ µ2v• i' and v*2 < µ2V'"t'. The later can only occur if 

cI>M is not a singleton. 

(4.1) v•2 ~ µ2v* 1'. Mary will deviate from her response strategyu = V* 1 at node 

l' <=> :3 (u, v) e 01 such that V* 2 s; v < V* 1- This is impossible since V* 1 = V*2. 
(4.2) V"'2 < µ2V*1'. The argument on incentives to deviate is as in case (2). 

Proof of Theorem 3 
( J) It remains to show that to each element of rM u EM and P' there corresponds a 

perfect equilibrium. Suppose v E rM u :SM. Set u = v, ro = pf(v). Then SM>' 0, 

v• t = u, and u• 1 = f(u). If S' = 0 we are in case (2) of Lemma 2 and v e rM I 

:SM while if S' ,s 0, v E rM r, :SM and we are in one of the cases (4.1), (4.2), 

according to how v• 1' is chosen (if there is no choice, the case is ( 4.1) ). Since 

each value in rM u ,SM is different the correspondence is bijective. Suppose u e 

P. Set ro = u/µ, u = µg(u). Then S1 >' 0, U* 2 = µUil2 = u and V* 2 = µ Vil2 = u. 

If SM= 0 we are in case (3) of Lemma 2 and u e P\ .:::1 while otherwise we are in 
one of the cases (4.1), (4.2), in which it is Joan's proposal which is accepted. But 

these are precisely the cases we have excluded from r 1 in the definition of fl'. 
Thus we have a bijection between the values in r 1' and the equilibria in which 
Mary's proposals are accepred. . 

(2) If L 1 is non-empty then so is r1 and the game is not a principal agent game, 

because Mary bas proposals which may be accepred. 1f fM has more than ooe point 

then there are several equilibria, in which Mary's strategies play a role. If LJ is 

empty then :SM is empty and rM = (inf(L")}, corresponding to u• 1 = f(vR). If f is 

decreasing, rM \ ,SM can only contain points S: V* 1 by Proposition 5 so that is the 
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only element of rM. There is only one equilibrium in which Joan gets the highcsl 
payoff she can get offering Mary at least her reserve utility. 
(3) This situation is similar to (2). ♦ 

Proof of Theorem 4 
The first thing to note is that the definitions of SJ and SM do not depend on who 
begins the game. The second is that both players prefer the outcome in Table 8 to 
the outcome in Table 6, that is, if only Mary can make a proposal which will he 
accepted it is better if she makes it in period 1 than in period 2, thus avoiding the 
discount. In this way, for Mary, a proposal can materialize which might have been 
rejected by Joan if delayed to the second period because by then even the reserve 
utility has a discount (we keep to the convention that a proposal is accepted even 
when it yields only the reserve utility and that between two z.ero outcomes the first 
is preferred). The symmetrical argument holds when only Joan can make a 
proposal. ♦ 

Proof of Lemma 3 

( I) Condition (a) and v e [[VR, v+] n K1(v) are clear; (b) holds by the additional 

assumption, and (c) holds for small enough< because: as< ➔ 0 pf(v) increases to 

f(v); therefore, since g is left continuous, g(pf(v)) ➔ g(f(v)) so also µg(pf(v))---> 
g(f(v)) < v. 

/2) Condition (c) cannot hold for small< because, as in ( I), as< ➔ 0 µg(pf(v)) ---> 
g(f(v)) > v. 
( 3) The first assertion holds by construction. f is continuous at vo by the left 
continuity off an g. 
(4) We have u, = p~(v,) and u, = f(v,/µ,). Therefore 

(1-p,)u, _ p,(f(v,)-f(v,/µ,)) 
(1-µ,)v, - µ,(v,/µ,- v,) · 

We take limits of both sides as 't tends to zero. Since the numerator and 
denominator of the LHS tend to z.cro, by L'HOpital's rule the limit is the quotient of 
the derivatives at zero. But 

:?c(d (1-p,)u,)l..o=lim,➔ (l-p,)u, =:?c(d (l-p,J)l,-o!im,➔-0u,=au 
< t t 

and similarly fi{<l-µ,)v,)I ,-o = ~v, so we obtain 

00L = - t'(v) 
Pv 

which implies the negative elasticity of f is cxlP. It is clear that where f and g are 
inverses their elasticities are reciprocal. 
(5) The limit exists because the sequence v't is bounded. If infinitely many of the 

points v, e 3M,, then µg(pf(v,)) = v, so µg(pf(vo)) = vo. If infinitely many of the 

points v't e rM't \ EM-r, then they are each at a point where f is constant on some 

interval If also the limit does not satisfy µg(pf(vo)) = vo then for small enough t, 

g(f(vi- )) < V-c. Therefore v-r e fMo \ EMo and since this set iii finite the limit is in the 
set. 
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(6) We calculate: 

ah\;; v) = - Bµg(pf(v)) + µg}pf(v))( - cxpf(v)) = h(t, v)( - B + cxg'(pf(v))), 

and integrate. 
(7) Proof of ( ¢=). We have g'(u) ;e jl/cx on (f(vo), f(vo-£)), without equality 

occurring on subintervals of this set. Thus h(t, v) > I for pf(v) E (f(vo), f(vo-£)), 

which for small 'tis an interval ending at f-1(p·1f(v0)) < vo. Hence :EM-c f"I (vo-E, 
f· 1(p·1f(vo))) = 0 for small enough t. 

Proo/of(=>). LHCI is broken if on some subinterval g'(u) = jl/cx or if g'(u) < 
jl/cx somewhere on (f(vo), f(vo-e)). Then the integral expression shows that for 

small values oft there are fixed values 
v < vo that lie in :EM't' f"I I. 

(8) Proof of ( ¢=). We have g'(u) > jl/cx arbitrarily closely to f(vo) on (f(vo+E), 

f(vo)) or g'(u) = Bia on subintervals of (f(vo+e), f(vo)) arbitrarily closely to f(vo). 

Thus there are values of v arbitrarily closely to the right of vo for which h( t, v) ,; I. 
Hence :EM't' f"I [vo, vo+E) ¢ 0 for small enough t. 
Proof of ( =>). RHCI is broken if for some smaller subinterval (v0, v0+e'), g•(u) ,; 

jl/cx on (f(vo+E'), f(vo)) and equality does not occur on subintervals. But then the 

integral expression shows :EM-c f"I ( vo--e v0+e') = 0 for small t. 

(9) Proof of ( ¢=). For E choose the minimum £ of the relevant left and right side 
conditions. If vo > VR, each of the left hand conditions implies (using (7) and (8) if 

necessary) that :EM,: f"I (vo-E, w't') = 0, where Wt tends to vo, while each of the 
right hand side conditions imply I:M, n [vo, v0+e);, 0. It follows that the 

sequence v't' = inf(:EMt n I) tends to vo as t ➔ 0. If vo = YR, the left hand 
conditions are unnecessary, butLHC2 holds vacuously. 
Proof of(=>). If either of the left hand conditions is broken, then there is some w < 
Vo for which :EMt f"I (YR, w) ¢ 0, while if only one of the right conditions is 
broken there is some E' for which :EM't n (Vo-£ vo+E') f"l [vR, vo+E') = 0 for small 
t. 

(JO) Since g(f(vo)) < vo, for small enough t, µg(pf(vo)) < vo. Therefore vo is on a 

segment on which f is constant (by applying Proposition 5 to rMo) and for small 

enough t, v0 e rMt• 
( 11) Since c;l>M't is non-empty and is contained in the bounded set pM (Proposition 
2(1)); Cl>Mo has at least one point. 

(12) The properties v, E [v*,,, v+J, (U* ,,, v,) e K1 and conditions (a), (b) and (c) 
can be verified to pass to the limit. The rest is as in the proof of Proposition 2(2). 
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( 13) As in ( 10), for small enough 't, V-c = v* so cf>Mo = <l>M-c• If v* is an interior 
point of EMo then f cannot be constant in a neighborhood, so cJ>M-r = {v* 1-c}. 

Similarly the given direct definition of cl>M0 gives the singleton { v*}. ♦ 

Proof of Theorem 1 
Lemma 3, the symmetry of the definitions of SJ and SM (independently of which 
player makes the first offer) and the facl that as 't tends to zero (U* 2, v* 2) and 

(pU#2, µV#2) have the same limit show that the construction of the optimal 
proposals (U1*, V1*), (UM*, yM*) is correct. The proof is an application of 
Theorems 3, 4 and Lemma 3. ♦ 

Proof of Theorem 2 
When a player imposes a punishment, she maximizes her payoff given the other 
player's share. The benefit received from punishing the other is reducing the 

emotional discomfort due to unfairness. For this to be possible we must have 6 > 
1. We shall assume that there are no negative punishments, and that the maximum 
level of punishment is 1, so OS x S 1. When Joan makes an offer, Mary decides 
her punishment by maximizing 

v(x) = sM - x - DM(sl - ox - sM + x) 
given sl and sM. We have 

: = (Ii - l)oM'(sL sM - (0- l)x) - I. 

There are three cases. 
(i) After deciding on her punishment, Mary has more than her fair share: 

s1 - sM - (6 - l)x < 0. We show this in this case x = 0. In this region DM is given 

by dM1 so oM < 0 and therefore:< 0, so punishment will be decreased to its 
minimwn. 

(ii) After deciding on her punishment, Mary has exactly her fair share. Then x 

= (sl - sM)l(o - I) and dt''(0),; (Ii - 1)°1 
because Mary has no incentive to punish 

more. 
(iii) After deciding on her punishment, Mary has less than her fair share. 

Writing~ for min{T, 1}, where T is the solution of the equation 

dr\T) = (~ - 1r1 
(the maximum level of punishment is 1), we obtain 

X = (sl - sM - ~)/(Ii - I). 
Whether case (ii) or case (iii) occurs depends only on Mary's character: how 

angry she gets when she is treated unfairly. By defining ~ = 0 in the case when 

dt''(0),; (Ii - 1}"
1 

we can summarize these results by writing 

sJ - sM - -t.' 
x=max{ i,0}. 

Ii - I 
We now show that Joan adjusts her proposals so that Mary docs not punish 

her, so x will be zero. Suppose x > 0. Then Joan's payoff is 
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du = I _--22_ = _ ti..l. < 0 
ds1 Ii-I Ii-I. 

This means that in her proposals Joan will limit her share so as not to provoke 
Mary to punish her. Therefore x = 0 and Joan chooses her proposals from the 
subset 

!+~ QI= { (sl _ Dl(sM _ sl), sM _ DM(sl _ sM)): 0,; sl,; 6 } . 
2 

We now obtain Joan's function f. For ½ S: s1 S: 
1 +;'J!t. Joan's utility is 

u ::: sJ - d{ (sJ - sM) so ..du_= 1 - d{'(sJ - sM). According to its definition, is the 
ds1 

maximum share that Joan can take for herself without feeling such discomfort that 

she would prefer to have less. Then for½ S: sJ S: s!.Joan' s utility is increasing. On 

the other hand, for O s: sJ s: ½• Joan's utility is u = sJ - ~(sM - s1), which is 

increasing with sJ since ..dY.. = 1 + d{'(s1 - sM) :2:: 0. In other words, there is a 
ds1 

maximum share sLax that Joan can propose to take for herself. which is determined 
either by the restrictions imposed by Mary's punishment, or by Joan's own 
discomfort if she takes too much advantage of Mary, whichever happens sooner. 

We analyze Mary's proposals similarly. She chooses her proposals from the 
set 

I +'r. QM= { (sl _ Dl(sM _ sl), sM _ DM(sl _ sM)) : 0,; gM,; 
2 

6). 

Our analysis permits us to define the functions f and g, which we write in 
parametric form. 

f(v) = sl - Dl(sM - s1), v = sM - DM(s1 - sM) given by s1 E [sl,.,., s!..axl, 

f(v) = sL:ax - D1(sl'fin - sL:ax) for v S: stJin - DM(sltax - S~10); 

g(u) = sM - DM(sJ - sM), u = s1 - D1(sM - s1) given by sM e [stfin• stlax1• 

g(u) = st!ax - DM(l - 2stl.,) for u,; s!..,n - Dl(stlax - sl.,0 ). 

(See Figure 4 for an example of the graph off and g). 
Observe that f and g are inverses on the sets 

v E [stfin - DM(sLax - S~in), st1ax - DM(s{rin - s~ax)], 

u e [sL:in - D1(stlax - s{un), sLax - D1(st1in - sLrax)1; 
f and g are constant on the closure of the sets 

V e [0, S~in - DM(sL:ax - st'iin)), 

u e [O, sLin - D'(s~ax - sl,.i0 )); 
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and f and g arc not defined outside these sets. Therefore these four sets are EM0• 

Elo, fMo and Flo. The negative elasticity off on EMo I ( l.} is given by 
2 

v ci1; (sM - oM(s' - sM))(l + 20J'(sM - sl) 
f"(sl) = - __Jja:'_ = ---------­

ft, (s1 - D1(sM - s1))(1 + 20M'(sl - sM) 

Its derivative with respect to s1 satisfies 

fE' = _ (v'f' + vf"~v' -{f'v' + fv")vr > O, 

(rv'f 
since f'' < 0, f' > 0, v" < 0, v' < 0. At sl = 1. the elasticity jumps across the interval 

2 

(e,, £2) • Applying Theorem I we obtain the negotiation equilibrium. ♦ 
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G' (u1, v,) (pu2, µv2) 
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(UR, VR) (UR, VR) (puR, µvR) (puR, µvR) 

Node I Node 1' Node2 Node 2' 

Period I Period 2 

Figure I. The gameG-consists of a series of basic ultimatum games G' andG" 
in which Joan or Mary make a proposal. (The payoffs are shown discounted to 
the first period.) 

G" (U• v*J < 2u* 2y*•J 
0 2,2 0 P1,µ1 

~ ~ o (0, 0) 

Figure 2. The games G' y G". The payoffs of these games correspond lo payoffs 
obtained in o-when playing it from node I or node 2 (discounted to the first period). 

M 
.,. __ x_-o (s'- ox, sM - x) 

J 

- - --
(0, 0) (0, 0) 

Figure 3. The one-shot ultimatum game with punishment Joan proposes (s1, sM) 

and Mary decides on a punishment costing her x but decreasing Joan's payoff by ox. 
The payoffs shown are the monetary payoffs. For the resulting utilities see the text. 
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Figure 4. Negotiation when there is a 
value of equality. The functions f(v) and 
g(u), which coincide, are shown in bold on 
the (u, v) plane. In this case, altough both 
players are morally deficient, Mary's sense 
of fairness stops her from being unfair 
more than Joan's willingness to puni,;;h her, 
while the opposite is true for Joan. 
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Figure 6. Duopoly Example 2. The 
equilibria are the large scale technology 
monopolies C and E. Point D does not 
represent an equilibrium. 

n2 

K' 

v; A . --------------
K2 

v; B 

u; u; 
n, 

Figure 5. Duopoly Example 1. There are 
two perfect equilibria, A and B. 
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Figure 7. Duopoly Example 3. There arc 
two equilibria F and H. In each case one 
firm uses the large scale technology 
obtaining larger profits, while the other 
uses the low scale technology and has 
lower profits. Point G does not represent 
an equilibrium. 


