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0. INTRODUCTION 

Game theory is one of the most challenging fields for a structuralist project aimed at 
providing a complete reconstruction of a scientific theory. 1 There are literally hun• 
dreds -if not thousands- of papers and books in an ever-growing literature. The 
amount of special games continuously appearing defies any classification and makes 
the field to look hopelessly complicated. This makes the philosophical ·effon of search• 
ing for a unified field theory particularly urgent and interesting. Indeed, the question 
is whether all the constructs that are presented as games reaUy constitute a theoretical 
corpus that can be reconstructed as a theory-net. 

One due in the jungle of games crowding the literature is to be found in the classic 
seminal work of John von Neumann and Oskar Morgenstern(VNM) Theoryo/Gamnand 
E.Conomic Behavior. This book provides an axiomatic formulation of (finite) n-person 
games in extensive form which is both intuitive and logically rigorous. Very much in 
the style of the structuralist formulation of theories, VNM defined 'n-person game' 
as a set-theoretic predicate. The central notion in the definition of this predicate 
turns out to be that of information set. The peculiar character of extensive games 
is therefore given by this notion and not -as many believe- by that of a tree. As a 
matter of fact, VNM barely make use of trees, and only for the purpose of "graphical 
representation".2 Yet, in spite of the facts that VNM themselves referred to this set
theoretic formulation as .. the extensive form",' and that their axiomatization has a 
straightforward game-theoretic interpretation (explicitly provided by the authors), it 
is no lunger usual now.adays to define 'extensive game' in the way VNM did. Many 
authors in the field of game theory today define the concept of extensive game in 
terms of trees characterized by means of directed graphs. 4 There is nothing to object 
to this representation except that, in our view, it obscures the logical structure of the 
theory and makes it hard to think of extensive games which arc not of a very limited 
kind, namely other than those in which the number of possible plays is finite. 

A question that naturally arises is whether the natural, intuitive way of formulating 
a game provided by VNM can be extended to cover all kinds of games. This would be 
a method to tackle the philosophical problem of a unified field theory pointed out 
above. J.C.C. McKinsey raised already in 1952 the conceptual problem of extending 
the notion of game in extensive form to games in which function spaces are involved. 
Aumann (1961, 1964) provided a solution to this problem, but the solution provided 
here is far more general than that provided by Aumann. The aim of the present 
document is to provide a relatively general definition of the notion of game in set
theoretic form, from the v.antage viewpoint of structuralistic philosophy of science, 

1 For a presentation of the structuralist metatheory -which cannot be given her<.'- the reader is 
referred to Balzer, Moulines and Sneed (1987). 

2 Cf. VNM ( 1944), pp. 77-79. 
-~ Cf. VNM (1944), p. 85. 
1 Since the work of Kuhn (195.'1). See, for instance, Bonnano (1993). Bonnano (1991) actually 

distingnishe.~ games in set-theoretic form from gamt.-s in c.,-xtensive form. 
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in consonance with the state of the art in the foundations of probability theory. I 
leave out of consideration, however, games of infinite length as well as games with 
an infinite number of players. More than trying to reach the proof of a particular 
theorem (like, say, Kuhn's theorem on optimal behavior strategies), the aim of the 
document is to show the explicit logical structure of the theory. Its unifying power 
could be tested afterwards in terms of its yielding a criterion to distinguish the most 
general theorems from those that are relative to specializations of the theory. 

I. IBEORETICITY 

The present reconstruction is based on the conjecture that the only properly theo
retical terms of game theory are the concepts of utility and global probability. The 
reasons that support this conjecture are basically two. In the first place, people are 
"playing games" all of the time, but the claim of game theory is far stronger than this. 
The claim seems to be - intuitively - that when people play certain kinds of games 
they do it in order to maximize a certain o:pected utility fundion. I take this to be, indeed, 
the interesting and deep claim that makes game theory to be a non-trivial empirical 
theory. In the second place, the determination of particular expected utility functions 
- especially in economics - seems to pressupose the very claim that the theory makes. 
This seemingly circular procedure gives rise to Samuelson's notion of revealed pref• 
erence, a notion that has been criticized by those who do not understand the role 
of theoretical terms in scientific theories. From a structuralist viewpoint, however, 
the notion of revealed preference is natural and suggests that preference - or rather 
utility - is a theoretical term in game theory. I hope that the discussions below will 
make plausible this conjecture. 

2. THE PARTIAL POTENTIAL MODELS OF TIIE THEORY 

Ann-person game is seen as set of rules that allow a certain set of possible plays. When 
a game is actually played, a certain sequence of moves takes place. At each of these 
moves one of the players, or an ideal player called the umpire, must make a choice 
among various alternatives under conditions prescribed by the rules of the game. 
The umpire chooses an alternative at random, while the other players have to make a 
personal choice. The crucial thing in the making of the choice for these players is what 
information they possess about the choices that were made in the previous moves. In 
particular, every player must know whether it is his turn to play at the current move 
and the choices that arc available to him at that point. 

For the sake of the understanding, let us say that whoever "sees" a particular position 
in a play 'TT "" <ri, ... , a,., for instance a. (K - I, ... , v), can "read" in this element 
(which is a choice made by some player at move M.), at least, who was the player 
that made such choice (i.e. who is the player whose turn was at .At,,), and which were 
the choices available to the player at..«.,.. Hence, whoever "sees" all the positions in 
'TT has perfect information concerning the play. Thus, at a certain move ..«... of the 
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game, the restriction of information for a player k consists of his not. "seeing" some 
of the previous elements of cr 1, ••• , cr. 1• This restriction could thus be represented 
by means of dashes in those places of the sequence CJ1, ••• ,cr._1 corresponding to 
positions not "seen" by k, i.e. sequences of the form: cri, ... , - , ... er.+ But another 
way of representing this restriction is to consider all the sequences obtained from this 
one by substituting all the a's that could possibly have occurred at those positions 
in the sequence where a dash occurs. Sets of this kind are called "information sets". 
For instance, an information set at move ~ for a little game with four moves is 
{ CT1, CT2, cr,, 04 <Ji, a;, a~. aa. A player having this information set at the move does not 
know what happened at move .,(4, but only that it his turn at~, that at ...44 the position 
was 0 2 or a;, and that he has two possible choices, namely u4 and o-;.5 

Therefore, the crucial game-theoretic notion ofinformation set can be represented 
by means of the set-theoretic notion of partition. A partition in O is a family .'4 of 
nonempty subsets of O -a subset of the power set Po(O)- such that the elements of 
:A. are pairwise disjoint. In the particular case in which the union of all elements of 
:A happens to be {l itself, dl is said to be also a partition ojO. But in the gener.:tl case 
such union will be a subset of 0. A subpartition dl of 21A is a partition in O such that 
every element in st is a subset of an element in 21A. I say that .stl is a subpartition of 21A 
within C iff every A E sd which is a subset of C is also a subset of some B E 00 which is 
also a subset of C. If .szt and 21il are partitions in n, the superposition of :A. and 00 is the 
family of all sets of the form An B, where A E .st and BE~-

In what follows, the value of a function/ for an argument x,J(x), sometimes will 
be written ash- The terms n and v, respectively, will denote the sets {I, ... , n} and 
{ I, ... , v}. The primitive terms of our axiomatization are given in the first definition, 
the definition of the partial models of the theory. 

DEFINITION I: (v, n, !l, .st/, 00, 'ii, ('J, ,j,, IJ,, T, ,\', P, d) E M,,(GAME) iff 

(1) Both v and n are positive integers. 

(2) 0 is a nonempty set. 

(3) di: v u { v + 1} -+ Po( n) is a function such that di. is a partition in O for 
every K.E vu {v+ I}. 

(4) 00:v -+ Po(H) is a function such that 00. is a sequence of sets (B.(k)) 
(k E {O} u n) for every KE v. The sets in the sequence are a partition in 
n. 

(5) t'.(i;: v x ( {O} u n) -+ Po(ll) is a function such that '€~(k) is a partition in 
B,(k). 

5 Kuhn (1953) introduced a more general definition of information set. According to this more 
general definition, the player does not have to know tl1e number of moves that have lair.en place in the 
game, but only that it is his turn and the choices open to him. Thus, his information set looks rather like 
{a4, rr~}. This more general concept can be obtained out of the previous one by means of the coordinate 
projection operation, and so there is no loss of generality if I rest.rict myself, for the time being, to 
consider only the former. 
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(6) 0:l:v x ({O} un)--+ Po(!l) is a function such that ~.(k) is a parlition in 
B,(k). 

(7) Vk En: 4>1 is a function from LJ:= 1 ~.(k) into LJ:~1 "-€.(k), such that 4>1(D.) E 
{ C, E 'ii,(k) / C, <;; D.). 

(8) lj, is a function from {A. E .stl. !A.~ B.(O) for some K = 1, ... , v} into 
U:., 'ii,(O), such that ,/,(A.) E {C, E 'ii,(O) / C. <;; A.). 

(9) Vk E {O} u n, VK Ev, and for every Ai of .sd.i which is a subset of B.(k), 
,(A.) is a topology over { C, E 'ii,(k) IC, <;;A,) such that ( { C, E 'ii,(k) / C, <;; 

A.}, T(A.)) is a topological space. 

(10) Vk E {O }un, 'v'K E v, and for every A* of di which is a subset of B.(k): 8-(A.) 
is the minimum a-algebra generated by the open sets of the topological 
space ( { C, E 'ii,(k) / C, <;; A.).-r(A,)). 

(11) Vk E {O}vn, VK E v, and for every A, or .99.1 which is a subset of B~(k): P(A.) 
is a measure over the measurable space ({C. E <"€ik) I c. £; A.}, ll{A.)). 

(12) Vk E n, d, is a function from the set n:.1 Tin.ELJ. ~.(.){ c. E '€.(k) I c. £;A.~ 
D.) into the set fI,,.,LJ,,,,.,{ C. E 'ii,(k) / c. <;; A. <;; D,). 

Conditions defining the partial potential models are only veTy general basic condi
tions that the intended applications must satisfy. There are additional nece.uary condi
tions that a partial potential model must satisfy in order Lo be a possible application of 
the theory. In order to motivate these necessary conditions, as well as those defining 
the models of the theory, I shall discuss in what follows the intended interpretations 
of the terms just introduced in the previous definition. 

The number v is intended to represent the length of the game, that is to say, the 
number of moves allowed by the rules of the game. This number is held to be constant 
by means of the convention of taking an upper bound for the number of moves that 
may possibly take place in any actual play of the game, and then completing any such 
play by means of dummy moves (if required), so that every play turns out to have 
exactly the same number of moves. R 

n is the set of all plays of the game. That is to say, in fl I find all the possible 
sequences of moves, even those that wilJ turn out to be forbidden by the rules of the 
game . 

.stl. is the umpire's pattern of information. Immediately preceding the move .M., the 
possible choices are represented by the elements AN of .99.N. The umpire's actual infar
mation at (i.e. immediately preceding) the move-«. is an element A. or .stl. whose 
members are sequences of the form a;, ... , cr;_ 1, cr.,a.+1, ... av, cr.,. 1, where the posi• 
tions at, ... , a;_1 are constant and a. is a variable that runs throughout all the possible 
choices that can be taken at .M.. given the previous course or the play a~, ... , a:_1• This 
implies that the umpire "'secs" at every move all the previous positions of the play; in 

6 Cf. VNM, pp. 59,.60. 
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particular, at Lhe end of the game ( at v + 1) the pattern of information of the umpire 
determines the game fully. 

At very Au it is the turn of precisely one player k, not necessarily the same in all 
A.s. This is expressed by saying that k is constant in A. but different ks are constant 
in different A.s. If I take all those A.s in which k is constant, and form their union, 
I get B.(k), which contains all the plays in which it is the turn of player k at position 
K. The sequence of all these B.(k)s (k = 0, 1, ... , n) is denoted as ~. and called the 
pattern of assignment. The B.(k) corresponding to the player k whose turn it is, is the 
actual assignment at move .M •. 

Suppose, now, that the actual assignment of the move..«,,. is a chance move. This 
means that the choice is within B.(O). In each of the (pairwise disjoint) A.s making up 
B.(O), both the possible alternatives and the probabilities associated to this alternatives 
arc constant, but they may vary from one set to the other. Within each of those A., 
the choice among the alternatives takes place (at random); i.e. the choice of a a •. To 
each er" in a sequence of the form a~, ... , er;_1> er., cr •• 1, ••• , a.,,1 there corresponds a set 
c. which contains aII sequences of the given form. Thus, the C.s induce a partition of 
A,. for every A. !;;;;; B~(O). 

If the actual assignment of the move M,. is personal, and so it takes place within 
B.(k) (k ~ 0), then the state of information of player k must be taken into account. 
This state of information is represented by a subpartition ~.(k) of B.(k) into disjoint 
sets D •. At least the possible alternatives and the information that it is his turn are 
constant in each of these D., but this information may vary from oneD. to another. In 
particular, the possible alternatives must be constant within the D. such that D. nA. is 
nonempty, where A. is the umpire's actual information at..«,.. If the choice of k takes 
place within Du it operates a subdivision ({i:.(k) of D. into disjoint sets C. corresponding 
to the different alternatives within D •. This is the pattern of choice when the move is 
personal. 

The decision functions or strategies <!>t and tJ, assign a choice to each player at each 
of his information sets. In particular, tJ, assigns to each A. ~B.(k) a point (a set) tJ,(A.) 
in { c. E '€"(k) IC. !;;;;; A"}, where the probability of the point being in set Y E 3'(A.) is 
P(A.)(Y). Fork En, <!>t assigns to each D. E 21:i.(k)) a subset C. of the A. which turns 
out to be the umpire's ac::tual information at.«,. (the player does not have to know 
which A" is this). 

At any rate, the decision functions determine a unique play ,r as the actual course 
of the game, in a way that I shall describe in what follows. 

At ..M.i there is only one set Ai, namely !l, in which a certain k is constant. In this case 
<l>~(A 1), or tJ,(A 1) fork= 0, is equal to a C1 ~Ai, Thus, the umpire's actual information 
at A½ isA2 ==Ai nC1 E ol-2 • 

Suppose now that at..«,. there is an actual assignmentB.(k); i.e. it is the tum of player 
k ¥- 0 at .M.,,. Actually, B.(k) = LJ{A. E !11., I k is constant in A.}. and !11. is a subpartition 
of~.(k) within R.(k). This means that every A. E .91., which is a subset of B.(k) is also 
a subset of some D. which is also a subset of B.(k). Now, since 'Zli.(k) is a partition in 
B.(k), every D. E 91}.(k) is a subset of B.(k). Hence, every A. in which k is constant is 
indudcd in some information set D. E 2ii.(k). (Thus, actually, U':'D.(k) = B.,(k).) For 
any D.,_ E (f/J.(k) there is a C. E '€.(k) such that C. !;;;;;D. (by G JO below). It is also easy to 
see that (for A.,~ B.(k)), A. n D., ¥- 0 implies A.!;;;;; D. and so that there is an A. with 

6 



Game Theory 

A. c;; D •. By G9 (below), A. n C. is nonempty. Hence, <f>(D.) = C., is well defined and, 
as a matter of fact, A.,,1 = <f>,(D.) n A. is the umpire's actual information at 9'., 1• An 
analogous argument holds if k = 0, with {A. E .stl. I A. ~ B.(O) for some K = 1, ... , v} 
instead of'2li.(k). Clearly, at .stl,..1 a unique course of play 1T has been determined, which 
depends upon the decisions or strategies adopted by the players: 

From now on, I shall denote by <f>_J, the n - 1 tuple ( <f:>1, .•• , cf>i-i, cf,., 1, •.. , cf>,.), and by 
ti>, the set of all these tuples. Also, (cf>4 , cf,,) will denote ((pi, ... , cf>H, cf,., cf>4+i, ••• , cf>,.). 
If agents other than k and O adopt strategies cf>-h then they narrow down the set of 
possible plays given these strategies to the set 1t(tJJ,cf,4 ):,,;:; {<1>4 E 4io,/1t(tp,cf,_"<f>,) E 
n }, in which case k is constrained to adopt a strategy in the set <l>i(cf,_,, cf,,) = { <I>, E 
¢ii/ 1r(tp, <f:,4 , cf>.1) E 1t(it,, <f>4 ) for some it, E '11}. Thus, a correspondence <p,: <I> ---+ <1>4 is 
defined for every k E n. 

At a D. E ~.(k), player k has to make a choice among the different alternatives 
that present before him. The set of these alternatives is actually the Kth projection 
of the A. that turns out to be the umpire's actual information at .M.,.; i.e. the set 
{a./ a~, ... , a;_1, a., a.,, 1, ••• , a,... 1 EA.}. Notice that, since the alternatives are constant 
at D., the Kth projection of any A. ~ D, is identical to this projection set. To each 
A. r;;;,_ D. and a. in the projection set there corresponds a C. ~ A. such that the Kth 
projection of C. is precisely crK. Hence, there is a bijection between the projection set 
and { CK IC. !;; A.} for any given A.!;; D •. Thus, any given topology on the projection 
set can be induced over any of these latter sets, so that all of them turn out to be 
homeomorphic. Therefore, I shall suppose that the topologies T(A.) are "identical" 
for the A.s included in the same D., and so there will be no loss of generality when I say 
that, in adopting an alternative, the player has actually adopted the c. corresponding 
to the alternative which is a subset of the umpire's actual information; i.e. a point in 
the topological space associated to the umpire's actual information. 

From now on, in order to simplify notation a little, I shall adopt the following 
conventions: 

Let 3, = LJ:., eil,(k). 

I.ct z = u;.,{A, E ..i. I A, s;: B,(O) for some K - I, ... ' v}. 

Sf = { C. E ~.(k) J CK~ A.!;; D.}, where A., is the umpire's actual informa
tion at .M.. for some Kand ~ = D. E Ql).(k). 

S, = {C, E '1:,(0)1 C, s;: A,), wheres= A,. 

Tf s: T(AK), where~= D., A.~D., and A. is the umpire's actual information 
at .At,,. 

,, a, e(A,), s = A •. 

8\ is the minimum er-algebra generated by the open sets in T~. 

7 



Garcia de la Sienra 

tr,= /f(A.), where,= A •. 

q,! = ntES:1 Ss, namely the set 

{ <I>,: 2, - LJ S,I <!>,({)ES,}. 
~El:!1 

-qr = n,El s,, namely the set 

{<i<:Z - LJStl,J,(s) Es,}. 
'" 

q, = II~ <I> •• 

FuncLion d• describes the decision actually adopted by player k; i.e. dt(cf>-h cf>.) is 
the point chosen by agent k in his space <t,. of possible strategies, given that personal 
players other than k chose strategies 4>+ 

3. THE DOMAIN OF INTENDED APPLICATIONS 

Given the tremendous varicLy of games in the literature, that I mentioned in the 
introduction, it would be futile to attempt to provided here a list of the intended 
applications of the theory. On the other hand, this is a topic that is hardly treated in 
the literature. Usually, a new type of game is presented without a really careful attempt 
to discuss its empirical import. The aim of this section is to provide a set of necessary 
conditions that the intended applications must satisfy in order to be considered as 
such. These conditions define a subset R ofM..(GAME) Roughly, the behavior these 
conditions describe is one of abiding to rules. Whether this rule-obeying behavior 
turns out to be a utility-maximization behavior is quite another matter: this is the 
empirical claim of the theory. 

More precisely, the empirical claim of game theory is not that any rule-0beying 
behavior is utility-maximization behavior, but only that certain cases of rule-Obeying 
behavior (i.e. some elements of R) are so. How to characterize these elements (a 
task that involves a lot of pragmatic and historic elements) is a question that cannot 
be tackled here. The level of generality at this point only requires that I accept the 
existence of some set I ~ R containing these elements. This set will be called the 
domain of intended applications. The set R is defined as the extension of the following 
set-theoretic predicate. 

DEFINITION 2: x = (v, n, 0, st, 00, '€, ~. Q), ti,, 'T, lf ,P, d) is a ruled-behavior structure iff 
x E ~,(GAME) and x satisfies the following axioms: 

(GI) :A. is a subpartition ofOO". 

(G2) 'i:.(O) is a subpartition of :A •. 

(G3) 'tk En: '<5.(k) is a subpartition of\JJ.(k). 
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(C4) 'r/k En: Within BAk), .szt. is a subpanition of'2l'i.(k). 

(G5) 'r/k E { O}un, VK E v, and for every A. of .szi. which is a subset of B.(k): P(A.) 
is a probability measure over the measurable space ( { C. E <{:.(k) IC.~ 
A,), ir(A,)). 

(G6) .szt1 consists of the one set !l. 

(G7) .szlv+i consists of singletons. 

(GB) VK E 11: .szt.+ 1 obtains from d. by superposing it with all <{:.(k) (k == 
0, 1, ... ,n). 

(G9) '<IKE v: If A. of .szt. and C. of<{:ik) (k = 1, ... , n) are subsets of the same 
D. of'2l'iot(k), then the intersection A. ri c. must not be empty. 

(G 10) VK E v, Vk E n, and every n. of 2l'i.(k): Some C. of<'.€.(k), which is a subset 
of D., must exist. 

The intended interpretation of axioms (Gl)-(GIO) is the following. 

(Gl •) The umpire's pattern of information at the move..«,,. includes the assign
ment of that move. 

(G2·) The pattern of choice at a chance move .At.. includes the umpire's pattern 
of information at that move. 

(G3•) The pattern of choice at a personal move..«,,. of the player k includes the 
player k's pattern of information at that move. 

(G4•) The umpire's pattern of infonnation at the move..«.., includes -to the 
extent to which this is a personal move of the player k- the player's k 
pattern of information at that move. 

(G5·) The various alternative choices at a chance move..«. constitute the ele
mentary events of a certain probability space. 

(G6•) The umpire's pattern of information at the first move is void. 

(G7•) The umpire's pattern of information at the end of the game determines 
the play fully. 

(CW) The umpire's pattern of information at the move ..«01 (for K = v: at the 
end of the game) obtains from that one at the move ..«,,. by superposing 
it with the pattern of choice at the move .M. •. 

(G9•) Let a move .M.,. be given, which is a personal move of the player k, and 
any actual information of the player k at that move also be given. Then 
any actual information of the umpire at that move and any actual choice 
of the player k at that move, which are both within (i.e. refinements oO 
this actual (player's) information, are also compatible with each other. 
I.e. they occur in actual plays. 
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(GIO·) Let a move.,«~ be given, which is a personal move of the player k, and 
any actual information of the player k at that move also be given. Then 
the number of alternative actual chokes, available to the player k, is not 
zero. 

4. THE MODELS OF TifE TifEORY 

In a first approach, the empirical claim of GAME is that the behavior described by 
the elements of I is utility-maximizing behavior. In order to make precise this claim, 
I need to formulate the fundamental law of game theory. This, in turn, requires the 
introduction of the following conceptual apparatus 

In order to define the objective function, which is not exactly bare utility, but rather 
expected utility, I need to define before the umpire's experiment. When the index set 
Z is finite, the umpire's experiment is just the direct product of the probability spaces 
(S,, fr,, Pc). In the general case, the umpire's experiment is the projective limit of the 
family of all such possible direct products, as characterized in what follows. 

Let D be the class of all finite subsets of Z directed by inclusion; i.e. a < f3 
iff a ~ ~ for a, 13 E D. For each a E D and family {(S,, 3\, P,)}tEa of probabil
ity spaces, I let (S,., l! .. ,P") be the direct product of these spaces. For every a < 13 
(a, 13 E D), let g,.fl,: Sfl, --+ S" be the coordinate projection, namely the function such 
that g .. fhi, ... , s,., ... , sp) = (si, ... , s.,). It is easy to see that (i) gmli is measurable, in 
the sense that g~1(Y) E lSP for all Y E 3',.; (ii) the g4 s are compatible in the sense 
that, for a < f3 < -y, g4 o gfh = g01 and g,.,. is the identity; and Pa = Pf!- o g~ for each 
a < ~- Hence, the structure {(S0 , ff,,, P,.,g .. 11 )<><fl, [ Cl, f3 E D} is called a projective system of 
probability spaces. 

The probability space (S, fr, P) is called the projective limit of the projective system 
{(S .. , 8-.. , Po,g .. tl,),.<tl I a,~ E D} if(i)S = n{EZ s,; (ii) 1f is the minimun er-algebra generated 
by all cylinder sets of the form,g;1(Y .. ) (g,.(s) = (s,1, ••• ,sc.,) for every a= {t,, ... , ,.} E 
D), where Y,. is a Borel set in 3',.; (iii) Pis the (unique) a-additive extension to if of the 
measure Po defined on the cylinder sets by P0(g;1(Y11 )) = P11(Y.,). 

The umpire's experiment is not the only projective limit required by GAME. In fact, 
also the definition of mi:ired strategy requires this concept. By the umpire's experiment 
I mean precisely the projective limit of the projective system {(S,., S:11 , P,.,g .. 11 ),.<P la, f3 E 
D}, where Dis the family of all finite subsets of Z. By a distributional strategy of personal 
agent k I mean, analogously, the projective limit of the system { (S,., ~ ... P,., g .. fl,),.<P I a, 13 E 
D}, where D is the family of all subsets of S:1•
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From now on, the umpire's experiment shall be denoted as ("I',@, Q), whereas 
the distributional strategy of agent k shall be written as (4>., ,l., P1 ). Notice that in 
the case when the space (<Ph lf.,P,) is atomic (i.e. when the singletons {ct,1} E {f1 have 

7 Notice lhat ow- distributional strategy is similar to what Milgrom and Weber (1985) call a 
distributional strategy, the difference being that our concept is more general in two respects: (i) the 
measure P (their 1,W) is not defined over the whole set E, x Ute:.!, S~ (their T; x Ai) but only over the set 
of all functions from E, into UteE St; i.e. over <I>.;, which is more natural. (ii) I am not assuming that the - . 
l::;1s are complete, separable metric spaces. 
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positive probabilities and [;~,E,s,, P( { <!>*}) = 1), P, determines a mixed strategy, defined 
by the distribution p(q>,) = P,.( { <l>.1} ), At any rate, as Milgrom and Weber ( 1985) have 
shown, "distributional strategies are simply another way of representing mixed and/or 
behavioral strategies".~ 

Thus, the question whether the distributional strategies and the umpire's experi
ment are well defined boils down to the question whether the projective limits of the 
spaces {(S., ,!., P.,g.,).,, I a,~ ED} do exist. 

The temptation arises here to find conditions guaranteeing the existence of distri
butional strategies and the umpire's experiment. Yet, such a search is wrong when the 
task is to provide the most general formulation of GAME. I suspect that any attempt 
at finding conditions for guaranteeing the existence of such spaces will land in a set 
of at most .mff,rcient conditions to the effect. Actually, the most general result known 
about the existence of projective limits of probability spaces is Kolmogorov's-Bochner 
Theorem. According to this theorem, the existence of the required projective lim
its is implied by two conditions: (i) the topological spaces generating the a-algebras 
are Hausdorff, and (ii) the probability measures of the coordinate spaces arc Radon 
measures.9 Yet, the condition that the measures be Radon is sufficient but not nec
essary, and so it is actualJy restrictive. For instance, the real spaces dealt with by Kol
mogorov in his less general version of the Fundamental Theorem need not be Radon! 
Therefore, it is more reasonable to assume that the required projective limits are 
GAME-theoretic. 

The previous discussion motivates the introduction of the following definition. 

DEF1NITION 3: x ~ (v, n, !l, '4, !!/l, '{;, ('/), ~. lj,, T, 8, P, d, p•, u) E M,,(GAME) iff 

(I) (v, n, !l, '4, !!il, '{;, ('/), ~. lj,, T, 8, P, d) E M,,.(GAME). 

(2) P; = Q is a probability measure over the measurable space ('I',@) such 
that (W,@, Q) is the umpire's experiment and, for every k E n, P; = P. 
is a probability measure over the measurable space (<I>" (J.) such that 
(<l>h ,l., P.) is a distributional strategy of agent k. 

(3) For every k E n, u.: 'Ir x <I> -+ R is a bounded function such that the 
restriction of u. to 'Ir x {cf>} is @.-measurable. 

The previous definition - the definition of the potential models of GAME - has 
placed us in good shape to discuss the fundamental law of the theory. This requires 
the introduction of the crucial notion of expected utility. Notice that since every 
(\j,,cf>) E 'Ir x <I> determines a unique play 1T' = 1r(\j,,¢,) E !l, and every 1T' E O is 
determined by a unique strategy (\j,, ¢,) E 'Ir x <I>, I shall write "u.(\j,, cf>)" instead of 
"u,( "(<Ii, ~ )) .• 
DEFINITION 4: The expected utility function of personal player k E n is the mapping 
U~: <I>-+ JR defined for any¢, E <I>, by the condition 

U,(~) = 1 u,('1<, ~) dQ. 
'" 

~ In the sense of Aumann (1964). Seep. 620. 
9 A measure over a measurable space is called a Radnn measuu iffthe measure of any measurable 

~l is the limit of a sequence of measures of compact measurable sets. See Kolmogorov (1956) and 
Bochner (1955). A proof ofthi.\ theorem can be found, for instance, in Rao (1981), pp. 9.12. 

II 
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For any personal player h, l define the maximization correspondence µ..: 4> -----+ 4>1 

by means of condition 

The global maximization correspondence is just µ: 4> -----+ 4>, given by 

Analogously, the global decision correspondence is given by 

d(<J,) = d,(<J,) x · · · x d,(<J,). 

Using this terminology, the models of GAME can be defined as follows. 

DEFINITION 5: • = {v, n, !l, d, \'II, 'll, ~. <J,, ,i,, T, tr, P, d, p•, U) E M(GAME) iff every 
personal player maximizes expected utility, i.e. there is a 4> E cJ> such that 

Thus, to say that a certain potential model x is actually a model is tantamount to 
saying that x has a Coumot-Nash equilibrium. This is Lhe real import of the existence 
of equilibria. Only potential games that have Cournot-Nash equilibria arc actually 
games. 
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