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INTRODUCTION 

The distinctive task in Bayesian analysis of deriving priors so that the inferential 
content of the data is minimally affected in the posterior, has been of great interest for 
more than 200 years since the early work of Bayes (1763). More current approaches 
to this problem, based on the maximization of a specific criterion functional, have 
been suggested by Good (1968), Zellner (1971) and Bernardo (1979). 

In Good's (1968) Minimax Evidence method of deriving priors, the principle 
of maximum invariantize<l negative cross-entropy is introduced, here the initial den­
sity is taken as the square root of Fisher's information. In Zellner's (1971) book is 
presented for the first time a method to obtain priors through the maximization of 
the total information about the parameters provided by independent replications of 
an experiment (prior average information in the data minus the information in the 
prior). In Bernardo (1979) a procedure has been proposed to produce reference priors 
by maximizing the expected information about the parameters provided by indepen­
dent replications of an experiment (average information in the posterior minus the 
information in the prior). 

All of the above methods have comparative and absolute advantages in several 
respects: 
(i) While Zellner's method is based on an exact finite sample criterion functional, 
Good's approach uses a limiting criterion functional, and Bernardo's procedure lies 
in asymptotic results. In Bernardo's proposal a reference prior (posterior) is defined 
as the limit of a sequence of priors (posteriors) that maximize finite-sample criteria. 
In a pragmatic approach in which results are most important, many reference prior 
algorithms have been developed. For instance, Berger, Bernardo and Mendoza (1989), 
and Berger and Bernardo (1989), (1992a), (1992b), Bernardo and Smith (1994 , ch. 
5), and Bernardo and Ram6n (1997). 
(ii) The criterion functional used by Bernardo is a cross-entropy, which satisfies a 
number of remarkable properties, in particular, invariance with respect to one-to-one 
transformations of the parameters (Lindley 1956). In contrast, the total information 
functional employed by Zellner is invariant only for the location-scale family and 
under linear transformations of the parameters. To generate invariance under more 
general transformations, side conditions are needed. 
(iii) The way in which these methods have been tested is by seeing how well they per­
form in particular examples; the evaluation is often based on contrasting the derived 
priors with Jeffrey's (1901), usually improper, priors which are somewhat arbitrary 
and inconsistent. In fact, there are cases in which one can seriously recommend not 
using Jeffrey's priors. See, for instance: Box and Tiao (1973), p. 314; Akaike (1978), 
p. 58; and Berger and Bernardo (1992a), p. 37. 
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In this paper, we attemp to reconcile all inferential methods which by maxi­
mi:ting a criterion functional produce non-informative and informative priors. In 
our general approach, Good's Minimax Evidence Priors (1968 and 1969), Zell­
ner's Maximal Data Information Priors (1971, 1977, 1991, 1993, and 1995) and 
Bernardo's Reference Priors (1979 and 1996) are seen as special cases of maximiz­
ing a more general indexed criterion functional. Thus, properties of the derived 
priors will depend on the choice of indexes from a wide range of possibilities, in­
stead of on a few personal points of view with ad hoc modifications. In the spirit 
of Akaike (1978) and Smith (1979), we can say that this will look more like Math­
ematics than Psychology-without demeriting the importance of the latter in the 
Bayesian framework. This unified approach will enables us to explore a vast range 
of possibilities for constructing priors. It is worthwhile to note that our general 
method extends in a natural way Soofi's (1994) pyramid by adding more vertices 
and including their convex hull. In any event, a good choice will depend on the 
specific characteristics of the problem we are concerned with. Needles to say, the 
chosen method should also provide good predictions. 

This work is organized as follows. In section 2, we will introduce an indexed 
family of information functionals. In section 3, on the basis of asymptotic nor­
mality, we will state a relationship between Bernardo's (1979) criterion functional 
and some members of the indexed family. In section 4, we will study a Bayesian 
inference problem associated with convex combinations of relevant members of 
the proposed indexed family. Here, we will introduce Good-Bernardo-Zellner's 
priors as well as their controlled versions as solutions of maximizing discounted 
entropy. We will give special attention to the existence and uniqueness of the 
solution of the corresponding optimization problems. In section 5, we will study 
Good-Bernardo-Zellner's priors as Kalman Filtering priors. Finally, in section 6, 
we will give conclusions, acknowledge limitations, and make suggestions for future 
research. 

2. AN INDEXED FAMILY OF INFORMATION FUNCTIONALS 

In this section, we define an indexed family of information functionals and 
study some distinguished members. For the sake of simplicity, we will remain in 
the single parameter case. The extension to the multi-dimensional parameter case 
will lead to conceptual complications. This is not surprising when dealing with 
information measures and priors; see Jeffreys (1961), Zellner (1971), Box and Tiao 
(1973), and Berger and Bernardo (1992a). 

Suppose that we wish to make inferences about an unknown parameter 0 E 
8 <; 1R of a distribution Po, from which there is available an observation, say, 
X. Assume that Po has density /(xl0) (Radon-Nikodym derivative) with respect 
to some fixed dominating u-finite measure ,\ on lR for all fJ E 0 i:;;_ IR, that is, 
dP0/d>, = J(xl0) for all 0 E 8 c::; IR, thus Po(A) = JAJ(c,l0)d>.(x) for all Borel 
sets A EIR. 

The Bayesian approach is to assume that there is a prior density, 1r(B), de­
i:;cribing initial knowledge aLout the likelihood of the values of the parameter, 0. 

3 
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We will assume that 1r(O) is a density with respect to some o--finite measure tt 
on IR. Once a prior distribution, 1r(0), has been prescribed, then the information 
provided by the data, x, about the parameter is used to modify the initial knowl­
edge, as expressed in 1r(0), via Bayes' theorem to obtain a posterior distribution of 
0, namely, f(B/x) ex: J(xl0)rr(0) for every x E 1R (using f generically to represent 
densities). The normali:ted posterior distrihution is then used to make inferences 
about 0. 

Let us define an infinite system of nesting functionals: 

V7 ,a,,(n) = l ~ 
7 
J n(0)G(T(0), F(0), ,, a, 8)dµ(O), (2.1) 

where 

G(T(0) F(O) o) = l {exp{[F(0)/T(0)J
1
-'[T(0)]tc¾ - 8[T(0)]'-a}} 

' ''Y, a, og rr(0)1-1' ' 

0 '.S 7 < 1, a E {O, l}, 8 E {0,1}, and 

T(0) = j (:0 log/(xl0))
2 

f(xl0)d>-(x) (2.2) 

is Fisher's information about 0 provided by an observation X with density f(xlO), 
and 

F(0) = j f(xl0)logf(xl0)d>-(x) (2.3) 

is the negative Shannon's information of f(x/8), provided I(0) and :F(0) ex­
ist. In the case that n independent observations of X are drawn from Po, say, 
(X1 ,X21 ,.,,Xn), then I(0) and :F(0) will still stand for the average Fisher's in­
formation and the average negative Shannon's information of f(x/0) respectively. 
It is not unsual to deal with indexed functionals in inference problems about a 
distribution, as did Good (1968). 

In particular, notice that for the location parameter family f(xlO) = f(x -
0), 0 EIR, with the properties J [f'(x )] 2 / f (x) d>-(x) < oo and J f(x) log /(x) d>.(x) 
< oo, where ,\ = µ stands for the Lebesgue measure, both I(B) and :F(O) are 
constant. Observe also that the scale parameter family f(xl0) = (1/0)/(x/O), 0 > 
0, with the above properties, satisfies the following relationship: 

F(0) = ½ logT(0) + constant. (2.4) 

The indexed family with which we will be concerned is given by 

A= mnv[ {V1,u,0(1r)}] = convex hull of the closure of the family {V1',<.l',8(1r)}. 

We readily identify a number of distinguished members of A: 

4 
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(i) Criterion for Maximum Entropy Priors (MAXENTP): 

Vo,o,1(1r) = - f 1r(0) log1r(0)dµ(0), 

which is just Shannon's information measure of a density 1r(0), or Jaynes' (1957) 
criterion functional to derive maximum entropy priors. Notice also that (2.3) can 
be rewriten in a simpler way as F(0) = -Vo,o,1(/(xl0)), 

(ii) Criterion for Minimax Evidence Priors (MEP): 

def , f 1r(0) V111(1r)= hmV0 11(1r)=- 1r(0)log-( )dµ(O)-logC, 
' ' 1"----+l ' ' p 0 

(2,5) 

which is Good,s invariantized negative cross-entropy, taking as initial density 
p(0) = C[I(B)]½ with C = {,{[I(0)]!dµ(0))- 1 , provided that f[I(0)]½dµ(0) < oo, 
We can also write (2.5) as 

(2,6) 

(iii) Criterion for Maximal Data Information Priors (MDIP): 

ff l(0lx) 
Vo,o,0(1r) = f(x)f(0lx)log 1r(B) dµ(0)d>.(x) (2,7) 

which is Zellner's criterion functional in his MDIP approach. Here, as usual, 

f( OI ) = f(xl0)1r(0) 
X f(x) ' f(x) = f f(xl0)1r(0)dµ(0), 

and l(0lx) = f(xl0) is the likelihood function, An alternative formulation of (2,7), 
which is often useful, is given by 

(2,8) 

Some members of A define new criterion functionals in which the information 
provided by the sampling model, I(0), plays a role: 

(iv) Criterion for Maximal Modified Data Information Priors (MMDIP): 

ff [t(0lx)Jl1'<0JI' 
Vo,1,0(1r) = f(x)f(Olx) log 1r(B) dµ(0)d>.(x) (2, 9) 

5 
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which is the prior average information in the data modified by Fisher's information 
minus the information in the prior. Note that when I(O) is constant, (2.9) reduces 
to Zellner's criterion functional (up to a constant factor). 

( v) Criterion for Maximal Fisher Information Priors (MFIP): 

J rr(0) 
Vo,1,1(rr) = - rr(0)log 1 dµ(0)- l 

exp{[I(0)],} 
(2.10) 

which is the prior average Fisher's information minus the information in the prior. 

3, REVISITING BERNARDO'S REFERENCE PRIORS 

The maximization of Ilernardo's (1979) criterion is usually a difficult prob­
lem to deal with. In order to get a simpler alternative procedure under specific 
conditions, we will derive a useful asymptotic approximation between Bernardo's 
criterion functional (or Lindley's information measure, 1956) and some members 
of the class A. As stated in Bernardo (1979), the concept of reference prior is very 
general. However, in order to keep the analysis tractable, we will restrict ourselves 
to the continuous one-dimensional parameter case. 

Suppose that there are available n independent observations, say, (X 1, X 2, ... , 

Xn), of a distribution Po, 0 E E> ~ IR. Accordingly, the random vector (X 1 , X 2 , ... , 

Xn) has density dP0/dv = f(el0) = fI;_1 f(xkl0) for al! e = (x 1 ,x2, .. ,,xn) and 
all 0 E 0 <; JR, where 

Pe =Pe@ Po@···@ Pe and v = A 0 A 0 .. · 0 A. 

n n 

Following Lindley (1956), a measure of the expected information about (J of a 
sampling model f(xl0) provided by a random sample of size n when the prior 
distribution of 0 is 11"(0), is defined to be 

(3.1) 

In order to obtain an asymptotic approximation of (3.1) in terms of V1, 1,1 and 
Vo,0,1, we state a limit theorem which justifies the passage of the limit under the 
integral signs in (3.1). The theorem rules out the possibility that the essentials 
of the statistical model, f(~/0), change when samples grow in size. Let us rewrite 
(3.1) as: 

,c(nl(rr) =V0 ,o,1(rr) +log-/n 

-J J log(! Tn(w)Wn(w)dµ(w))t(el0)1r(O)dv(e)dµ(0), 
(3.2) 

6 
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where 

(3.3) 

and 
- ,,-(0 + 1,,) 

W,,(w) - ,,-(e) (3.4) 

Throughout the paper, both..\ andµ will stand for the Lebesgue measure on lR. 
Also, we will assume that all densities involved are Lebesgue measurable in both 
arguments, x and 0. 

Theorem 3.1 Assume that the following conditions hold: 
(I) E> is an open interval in IR; 

(II) The function ✓f(.xl0) is absolutely continuous on 0, and {xl/(xl0) > OJ is 
independent of 0; 

(III) If 0, 0' E 0, then 0 ¥ O' implies ,\{xl/(xl0) ¥ f(xl0')) > O; 
(IV) I, log /(xl0) exists for all e E 8 and every x; 
(V) I(0) is a continuous and bounded function in E>; 

(VI) For all Ii > 0, and all e E 0 

where B5(J,) = {x, IJt(xlO + J,,)- jf(xl0) I> lijJ(xlB) }; 
(VII) There exist c > 0 and T > 0 such that 

(VIII) For all p > O 

(IX) The sequence of random variables {log Un};::'=l where 
U,, = JT,,(w)Wn(w)dµ(w) satisfies 

lim sup] llogU,,ldP=O, 
~-oo n~l [logU.,1~~ 

where 

P{c; EA, 0 EB}= i ,,-(0) 1 f(sl0)dv(x)dµ(B) for all A E lR" and B E 8. 

7 
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Then, as n --+ oo, 

where cp(z) is the density of Z ~ N(O, I), and C is taken as in (2.4). ■ 

Some comments are in order: (I)-(IV) arc standard regularity conditions, (V) 
states desirable properties for I(0), (VI) is a bounded variance condition, (VII) is 
a smoothness condition, (VIII) is a convergence condition, and (IX) says that the 
sequence {log Un}~=l is uniformly integrable with respect to P. 

It can be shown (details can be found in Venegas-Martinez 1990a) that (I)­
(VI) lead to 

Tn(w)----Sexp{wy'I(e)[z - ½wv'I(O)]}, 

where Z ~ N(O, 1), and (3.6) along with (Vll)~(IX) imply 

log Un= log j Tn(w)Wn(w)dµ(w)----S log ✓2~/I(0) + ½z2, 

(3.6) 

from where the conclusion of the theorem follows. Notice that the right-hand side 
of (3.5) is independent of tr. Thus, if conditions (I)-(IX) are fulfilled, instead of 
maximizing ,e(oo)(1r), which is usually a difficult problem, we have as an alterna­
tive procedure maximizing V1,1,1(1r), which is independent of n. Notice that for 
maximization purposes the right-hand side of (3.5) becomes a constant. 

Finally, it is worthwhile to note that the location parameter family f(x/0) = 
f(x -0), with ✓-1!;0 absolutely continuous on Ill, and f [J'(x )] 2 / f(x) d,\(x) < oo, 
fully satisfies the conditions of Theorem 3.1. 

4. GOOD-BERNARDO-ZELLNER PRIORS 

In this section we introduce Good-Ilernardo-Zellner's priors as solutions of 
convex combination of relevant members of the class A. Very often, there exist 
priors for which entropy becomes infinite1 specially when dealing with the non­
informative case. In order to overcome this difficulty, we suggest the concept of 
discounted entropy. We also introduce Good-Bernardo-Zellner 1s contrvlled priors 
as solutions of maximiiing discounted entropy. We emphasize the existence and 
uniqueness of the solutions of the corresponding variational and optimal control 
problems. 

Throughout this section, we will be studying a number of Ilayesian inferen­
tial problems related to convex combinations of distinctive clements of A. Let 

M,(~Jd
0

',;v1.1,1(rr) + (1 - q\)Vo.o,o(~), 0 :Sq\ :S 1. Plainly, M,(~) EA. To see 
that M,p(7r) is concave w.r.t. 1r, it is enough to observe, as in Zellner (1991), that 

Vo,o,o(rr(O)) = £ 111 (rr(0)) + Vo,o.1(rr(0)) - Vo.o,I(f(x)), 

8 
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is a sum of concave functions w.r.t. 1r (up to the constant Vo,o,1 (/(x))). Since 
V1,1,1(1r) is concave w.r.t. 1r, M¢(1r) is also concave w.r.t. w. 

Usually, in the absence of data, supplementary information, in terms of expec­
tations about the parameter, comes from additional knowledge of the experiment, 
or from the experience of the experimenter, namely, 

J ak(0)rc(0)dµ(0) = ak, k = 1, 2, ... , s, (4.1) 

where both the functions ak and the constants 7Lk, k = 1, 2, ... , s, are known. 
Hereafter, we will assume that (4.1) does not lead to any contradiction about 
rc(0). 

Proposition 4.1 Consider the Good-Bernardo-Zellner problem: 

Maximize M,p(,r) (with respect to 1r) 

subject to C: j ak(0)rc(0)dµ(0) = ak, k = 0, 1, 2, ... , s, ao = 1 = ilo. 

Then a necessary condition for a maximum is 

" 
rc;i(B) ex [I(B)J½ exp{(! - ¢,)F(O) + L-'•••(0)), (4.2) 

k=O 

where ..\k, k = 0, 1, ... , s, are the Lagrange multipliers associated with the con­
straints C (cf. Zellner 1995). ■ 

Notice that when no supplementary information is available, 1r¢(0) is ap­
propiate for an unprejudiced experimenter, otherwise it will be suitable for an 
informed experimenter who is in favor of C. Observe also that wi(0) is Good­
Bernardo's prior, and 1rQ(O) is Zellner's prior. Consider the binomial distribution 
for a single observation, f(xl0) = ex(l - 0) 1-x, 0 s; 0 s; 1. In such a case, 
rci(0) = 0-½(1 - o)-½ and rc0(0) = 08 (1 - 01 1-• for 0 E [O, !], which are quite 
different. 

Corollary 4.1 Consider the location and scale parameter families, f(xj0} = 
f(x - 0), 0 E Ill, and f(xl0) = (l/0)f(x/0), 0 > 0, respectively, both satisfy­
ing f[f'(x)] 2 /f(x) d,\(x) < oo and J f(x)Iogf(x) d.X(x) < oo. Then, Good­
Bernardo's and Zellner's priors agree regardless of the value of¢ E (0, l).■ 

The proof of the above corollary for the scale parameter case follows from 
(2.4). It is important to point out that when there is no supplementary informa­
tion, we require µ(8) < oo. Of course, the parameter space 8 can have bounds as 
large as needed to consider where the likelihood for 0 is appreciable. 

9 
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Notice that Proposition 4.1 can be used recur!-iively when there is more sup­
plementary information to he added, say, 

J nk(0)rr(0)dµ(0) = ak, k = s + I, s + 2, ... , t. (4.3) 

In such a case, in a cross-entropy formulation (Kullback 1959), we take (4.2) as 
the initial density, and (4.3) as the additional information. Hence, 

" t 

,r;'.(0) ex [I(0)]f exp{(! - ¢)F(0) + L"•a,(0)} exp{ L ,\kak(0)) 
k=O k=.~+1 

t 

= [I(0)]! exp{(l -¢)F(0) + L"k"k(0)). 
k=O 

To deal with the (local) uniqueness of the solution of the problem stated in 
Proposition 4.1, we rewrite the constraints, C, as a function of the multipliers 
in the form A(A) = [f ak(o),,.;'.(O)dµ(0)J.~o = A, where ..-[T = (ao, a 1 , ... , a,), 
and AT = (>.o, .\ 11 ... , As) (the :.-mperindex T denotes the usual vector or matrix 
transposing operation). 

Proposition 4.2 Let 7r¢(0) be as in (4.2), and suppose that ak, k = 0, 1, ... , s, are 
linearly independent continuous functions in £ 2[8, 1l'¢dµ] (the space of all 1r¢dµ­

measurable functions a(0) defined on El such that la(O)l 2 is 1r¢dµ-integrable). Sup­

pose that A(A) is defined on an open set Ll C IR:'1+1, and let A0 be a solution of 
A(A) = A for a fixed value of A = .A0 • Then, there ex~ts a neighborhood of 
An, N(An), in which An is the unique solution of A(A) = An in N(A0 ).■ 

The proof follows from the fact that A(A) is continuously differentiable on 
LI., with nonsingular derivative A'(A) = [f a1(0)a,(0),rJ(0)dµ(O)]o,;,,t,;.,, and from 
a !'itraightforward application of inverse function theorem (cf. Venegas-Martinez, 
1990a). 

From (4.1) we may derive the following necessary condition, which is useful 
in practical situations. 

Proposition 4.3 The multipliers AT = (Ao, .\ 1 , ... , A11 ) appearing in (4.2} satisfy 
the following non-linear system of s + 1 equations: 

1 = .\o + log{Jrr(O)J* e(l-¢)1-"(0) D "A,a.(O),iµ(0) }, 

I~ ,\o - logiik + log{! ak(O)[I(O)]'f c(I-~¢)1-"(0) ft ,;,,,a,(e)d1,(0) }, k = 1, ... , s. 

JO 
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.Moreover1 

(i) if the integral in the first equality has a closed-form solution, then the rest of 
the multipliers can be found from the relations: 

(ii) the formula 

8!.u _ 
{)). = ak, 

k 
k = 1,2, ... ,s, 

' 
¢V1,1,1(~;) + (1- ,P)[Vo,o,o(~J)- 2Vo,o,1(~J)] = 1- L!.•iik, 

k=O 

holds for all O ,S ,P ,S l.■ 

Very often, experimenters are concerned with assigning weights iik, k = 
1, 2, ... , s, to regions Ak, k = 1, 2, ... , s, to express, according to experience, how 
likely it is that fJ belongs to each region. The following result, based on Proposi­
tion 4.3, characterizes Good-Bernardo-Zellner's priors when such a supplementary 
information comes in the form of quantiles, and both I(fJ) and :F(0) are constant. 
Under such assumptions, the non-linear system of s + 1 equations given in Propo­
sition 4.3 is transformed into a homogeneous linear system of the same dimension 
as shown below:. 

Proposition 4.4 Suppose that the sets Ak = (bk, bk+1l, k = 1, 2, ... , s - 1 and 
A" = (bi,, bi,+I) with b1 < b2 < · · · < bs+I, s 2: 2, constitute a partition of 8, 0 < 
µ(0) < oo, Suppose also that both I(0) and F(0) are constant. Let ii 1, ii2, ... , ii, > 
0 be such that I:~=t iik = 1, and J lA,(0)~(0)dµ(0) = iik, k = 1,2, ... ,s. If 
we define new multipliers: w0 = e 1-A0 /D where D = [I(B)]f e(l-,J,)F(o), and 
Wk = eA", k = 1, 2, ... , s. Then, fl = (wo, w1, ... , wi,) can be found from the 
following homogeneous linear system: 

-1 u, n2 u., wo 0 
-1 v, 0 0 w, 0 
-1 0 v, 0 w, 0 (4.4) 

-1 0 0 v, w, 0 

where Uk= µ(Ak), and Vk = O:k1
uk, k = 1, 2, ... , s. ■ 

Observe that the determinant, ~, of the matrix in (4.4) is given by 

which guarantees that there exists a unique nontrivial solution since LZ=l iik = 1. 
I h. h I t· . s1•T (1 -1 -1 -1) d • "' -1 n t 1s case, t e sou 10n 1s = ,v 1 ,v2 , ... ,v8 , an 1rq, = L...,k=Ivk lAk 

(cf. Venegas-Martinez 1990b, 1990c, and 1992). 

11 
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The following proposition extends Good-Bernardo-Zellner's priors to a richer 
family by using the MMDIP an<l MFIP criteria: 

Proposition 4.5 Let 

N,;,,;(n)~'¢V1,1,1(,.-) + (1- ¢)(1- ,p)Vo,o,o(,.-) + (,µ(1- ¢)/2)[Vo,1,1 + Vo,1,ol, 

0 :, ¢,, 1), :, L Then 
(i) .N'¢,V,J(1r) EA and is concave w.r.t. 1r. 

(ii) A necessary condition for 1r to be a maximum of the problem 

Maximize N,;,,; (") 

subject to C: / ak(0)n(B)dµ(0) = ak, k = 0, 1, 2, ... , .,, ao = 1 = ao, 

is given by 

"¢,,;(O) o:[I(0)]! exp { (1 - ¢,)(1-1/i)F(e) 

+ ,µ(] -¢,) [rr(OJJ½ + F(OJ, l + t,kak(e)}, 
2 [I(0)]• k~O 

(4.5) 

where >.k, k = 0, 1, ... , s, are the Lagrange multipliers associated with the con­
straints C.■ 

The second term inside the exponential of (4.5) is the average between Fisher's 
information and the negative relative Shannon-Fisher's information. Notice that 
1r4>10 (0) is just Good-Dernardo-Zellner's prior. 

In the following proposition, Good-Bernardo-Zellner type priors are derived as 
MAXENTP solutions by treating (2.5) and (2.8) as constraints (for the rationale 
of MAXENTP methods see Jaynes' 1982 seminal paper). 

Proposition 4.6 Consider the Jaynes-Good-Ber·nardo-Zellner problem: 

Maximize Vo,0,1 ( w) 

V1,1,1(n) - Vo,o,1(1r) = bi, 
subject to: Vo,o,0(1r) - Vo,o,,(n) = b2, 

J ak(0),.-(0)d1,(0) = ak, k = 0, 1, 2, ... , s, ao = l = ao. 

Then a necessary condition for a maximum is 

(4.6) 
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where Pi, j = 1, 2, and >..k, A:= 0, 1, ... , s, are the Lagrange multipliers associated 
with thC constraints. ■ 

Unlike the coefficients ,P and 1- ¢ appearing in (4.6), the multipliers P,i, j = 
1, 2, do not necessarily add up to 1. 

There typically exist priors for which Shannon-Jaynes entropy becomes infi­
nite. One way to overcome this problem consists of 

discounting entropy at a constant rate v > 0. The following propo8ition 
introduces Good-Bernardo-Zellner's controlled priors as solutions of maximizing 
discounted entropy: 

Proposition 4.6 Consider the discounted version of the problem stated in the 
preceding proposition: 

Maximize - j e-•0 ,r(0)logn(0)dµ(0), 

subject to: 

- l_dhi(O) -- Iog[~(e)J*, h ( ) 0 ( ) V ( ) ( ) n(O) di,(O) L • t - 00 = , h1 oo = 1,1,1 " - Vo,0,1 ,r < oo, 

_l_dh,(O) = :F(0), h 2(-oo) = 0, h2(00) = Vo,o,0(1r)- Vo,o,1(1r) < 00 , 
1r(0) dµ(O) 

1 dgk(0) (O) ( ) ( 
,r(O) dµ(O) = "k , 9k -oo = 0, 9k oo) < oo, k = 0, I, 2, ... , s, 

where ao = 1 = a'o. Then, a necessary condition for 1r"'(0) to be an optimal control 
is given by 

" 
~ '"' ,r"(0) c< [I(O)] ' exp{p,(0):F(0) + L, Ak(0)ak(0)), (4. 7) 

k=O 

where pj(O) = Pjoev0, j = 1, 2, and >.k(0) = >..koev8, k = 0, 1, ... , s, are the 
costate variables associated with the state variables hj(0), j = 1, 2, and Uk(8), k = 
0, 1, ... , s, respectively. Furthermore, the constants PjO, j = 1, 2, and Ako, k = 
0, 1, ... , s, can be computed from the following non-linear system of s +3 equations: 

1 + log h 1 ( oo) = log { J log[I( 0)] ½ m(p10, P2o, >-oo, >. 10, ... , >-,o; O)dµ( 0)}, 

I + log h2( oo) = log{ J :F( O)m (Pio, P20, >-oo, >. 10, ... , ,1,0; O)d1,( 0)}, 

I+ log9.(oo) = log{! ak(0)m(p10, P20, >-oo, >-10, ... , ,l_,o; O)dµ(0) }, k = 0, !, 2, ... , s, 

13 
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where 

( = m(pw, P20, >-ou, >-10, ... , >-,o; 0) = [I(0)] ' 
s c"o 

ef'2n:F(B) cAoo II eA-..ua,,(0)) . ■ 
u=l 

5. KALMAN FILTERING PRIORS 

Iu this section, we will study Good-Bernardo-Zellner's priors as Kalman Fil­
tering priors (Kalman 1960, and Kalman and Bucy 1961). We will continue to 
work with the single parameter case, and focus our attention on both the location 
and scale parameter families. 

Let Y1, Y2, ... , Yt be a set of indirect measurements, from a polling system or 
a sample survey, of an unobserved state variable flt. The objective is to make 
inferences about flt. The relationship between Yt and f3t is specified by the mea­
surement equation, sometimes also called the observation equation: 

(5.1) 

where At =f O is known, and Ct is the observation error distributed as N(0, o:';t) with 
o:';1 known. Notice that the main difference between the measurement equation 
and the linear model is that, in the former, the coefficient f3t changes with time. 
Furthermore, we suppose that f3t is driven by a first order autoregressive process, 
that is, 

f3t = Zdlt-1 + TJt-1, (5.2) 

where Zt =/:- 0 is known, and TJt ~ N(0, o:~J with a~t known. In what follows, 
we will assume that /Jo, er, and TJt are independent random variables. We might 
state nonlinear versions of (5.1) and (5.2), but this would not make any essential 
differences in the subsequent analysis. 

Suppose now, that at time t = 0, supplementary information is given by /Jo 
and ffJ, the mean and variance of /Jo respectively. That is, 

C 

1: -,,(f3o)d/3o = 1, 

1: f3o-,,(/3o)d/3o = Po, 

1
00 

~ 2 2 
_

00 

(/Jo - /Jo) -,,(fio)d/Jo = a'0. 

In this case, Good-Bernardo-Zellner's prior is given by 

(5.3) 

, - 2 -,,J,(/Jo) ex [I(/Jo)]' exp{(l - </>):F(flo) + >-o + >-1/Jo + >-2(/Jo - /Jo) }, (5.4) 

where ,\j, j = 0, 1, 2, arc Lagrange multipliers (cf. Venegas-Martinez ct al 1995). 
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Suppose that, at time t, we wi::;h to make inferences about the conditional 
state variable Bt = !3tllt, where It = {Y1, Y2, ... , Yt-d· To obtain a posterior 
distribution of Bt, the information provided by the measnrement Yt, with density 
f(Ytl0t), is used to modify the initial knowledge in 1r4'(0t) according to Bayes' 
theorem: 

(5.5) 

We are now in a position to state the Bayesian recursive updating procedure 
of the Kalman Filter (KF) for both the location and scale parameter families 
f(Y,[0) = f(Y, - 0), 0 E JR., and f(Y,10) = (l/0)/(Yt/0), 0 > 0, respectively. 
To start off the KF procedure, we substitute (5.4) in (5.3), obtaining that Good­
Bernardo-Zellner's prior at time t = 01 is given by N(/io, CTij), which is d:_scribing 
the initial knowledge of the system. Proceeding inductively, at time t, fit-I and 
'af-1 become supplP.mentary information, and therefore Good-Bernardo-Zellner's 
prior at time t is represented by 

(5.6) 

where 
(5.7) 

The sampling model (or likelihood function) is determined by 

(5.8) 

The posterior distribution, at time t, is then obtained by substituting both (5.6) 
and (5. 7) in (5.5), so 

f(O,[Y,) DC exp{-½[(At!i, - Y,) 2a;;2 + (/3, - z,f,_,) 2M,-11}. 

Noting that 1r¢(0t) is a natural conjugate prior, we may complete the squares to 
get 

e,fY, ~ N[z,f,_, + K,(Y, - A,z,i,-1), M, - K,A,M,], 
where 

Kt= MtAt(O';t + AlMt)-1. (5.9) 

This, of course, means that 

We then proceed with the next iteration. Equations (5.10), (5.7), and (5.9) are 
known in the literature as the KF. 

The above analysis can be summarized in the following proposition: 
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Proposition 5.1 Consider the state-space representation: 

{ 

Yt = Atf3t + E:t, 

/3t = Ztf3t-1 + 'TJt-l, 

defined as in (5.1) and (5.2). Suppose that supplementary information on the 
mean and variance of f3o is available. Let 0t = f3tllt, where ft= {Y1, Y2, ... , Yt-1 }, 
and consider the location and scale parameter families f(Ytl0) = f(Yt - 0), 0 E IR, 
and f(Y,10) = (1/0)/(Yt/0), 0 > 0, respectively, along with the properties stated 
in Corollary 4.1. Then, under Good-Bernardo-Zellner's prior, 11',P(Ut), the posterior -estimate of f3t, f3t, is given by 

fit= w,z,jj,_ 1 + (1- w,)(Yt/A,), 

6. SUMMARY AND CONCLUSIONS 

We have presented, in a unified framework, a number of well-known methods 
that maximize a criterion functional to obtain non-informative and informative 
priors. Our general procedure is, by itself, capable of dealing with a range of 
interesting issues in Bayesian analysis. However, in this paper, we have limited 
our attention to Good-Bernardo-Zellner's priors as well as their application to 
some Bayesian inference problems, including Kalman filtering. 

There exist priors for which Shannon-Jaynes entropy becomes infinite. In 
order to overcome this difficulty we proposed discounted entropy. We introduced 
Good-Bernardo-Zellner's controlled priors which maximize discounted entropy at 
a constant rate. Throughout the paper, we have emphasized the existence and 
uniqueness of the solutions of the corresponding variational and optimal control 
problems. There are, of course, many other members of the class A that deserve 
attention beyond what we have attempted here. Needless to say, more work will 
be required in this direction. 
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