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Abstract  
 
 
We propose a dynamic principal-agent model where the agent’s initial bargaining 

power is the state variable and a law of motion that governs their bargaining power’s 

behavior. Our numerical results indicate that agents with the same relative risk 

aversion might show different paths of their bargaining powers, and that more 

powerful the incentives ensue higher variability in the agent’s salary. We implement an 

empirical equation to identify CEOs’ bargaining power and find a set of values of the 

state variable for which the proposed dynamics explains well the relationship between 

firm performance and CEO compensation. Finally, by analyzing a panel sample of 

annual observations for 9,084 CEOs in the U.S., we conclude that our estimates are 

consistent with empirical findings of a slow yearly growth in CEOs’ compensation  
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Resumen  
 
Se propone un modelo dinámico de agente-principal en el cual el nivel inicial del poder 

de negociación del agente es la variable de estado, al igual que una ley de movimiento 

que gobierna el comportamiento de dicho poder de negociación. Nuestros resultados 

numéricos indican que agentes cuyos coeficientes relativos de aversión al riesgo son 

similares podrían mostrar diferentes trayectorias de su poder de negociación y que 

incentivos más fuertes podrían traer como consecuencia mayor variabilidad en el 

salario de los agentes. Se implementa una ecuación empírica para identificar el poder 

de negociación de gerentes y también encontrar el conjunto de valores de parámetros 

para los cuales la dinámica propuesta explica adecuadamente la relación entre el 

desempeño de la firma y la compensación gerencial. Finalmente, al analizar una 

muestra panel con observaciones anuales de 9,084 gerentes de compañías 

estadounidenses se concluye que los resultados obtenidos son consistentes con 
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hallazgos empíricos que señalan un crecimiento anual paulatino en la compensación 

gerencial. 
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Abstract

We propose a dynamic principal-agent model where the agent’s initial bargaining power
is the state variable and a law of motion that governs their bargaining power’s behavior. Our
numerical results indicate that agents with the same relative risk aversion might show dif-
ferent paths of their bargaining powers, and that more powerful the incentives ensue higher
variability in the agent’s salary. We implement an empirical equation to identify CEOs’ bar-
gaining power and find a set of values of the state variable for which the proposed dynamics
explains well the relationship between firm performance and CEO compensation. Finally, by
analyzing a panel sample of annual observations for 9,084 CEOs in the U.S., we conclude
that our estimates are consistent with empirical findings of a slow yearly growth in CEOs’
compensation.
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1 Introduction
The level and composition of the CEO pay have been greatly discussed both in the academic and
in the popular literature. There is extensive evidence of the heterogeneity of real-life CEO pay
packages (Tervio (2008); Gabaix and Landier (2008); Jenter and Kanaan (2015)). Firm size has
gained support from theoretical and empirical articles as a determinant of the CEO pay’s het-
erogeneity. For instance, the ”size of stakes” theory establishes a positive relationship between
the direction and magnitude of the change in the size of all bigger firms and the direction and
magnitude of the change in CEOs’ compensation, given those firms’ higher willingness to pay
for managerial talent (Gabaix and Landier (2008); Edmans and Gabaix (2016)). While analyz-
ing the causes of the increase of agency costs in U.S. since 1944, Gayle and Miller (2009) find
empirical evidence that links this phenomenon with exogenous growth in firm size; but they find
no reason to think that this increase is due to changes in managers’ risk preferences since they
have remained stable.

Apart from firm size, two additional hypotheses have been analyzed to explain the important
increase of CEO compensation (Jenter and Kanaan (2015)). First, there is evidence that CEOs
have acquired a higher ability to either extract rent from shareholders or have more influence
in the composition of board of directors (Shivdasani and Yermack (1999); Murphy and Sandino
(2010); Graham et al. (2020)). Limits to the shareholders’ bargaining power have been modeled
by introducing limited liability constraints and/or of bargaining settings in principal-agent mod-
els. Albeit those are interesting approaches, their predictions regarding CEO’s effort and total
surplus are mixed (Pitchford (1998); Yao (2012); Li et al. (2013)). Secondly, a highly compet-
itive market for managerial talent has driven this dramatic increase since the 1990’s (Jenter and
Kanaan (2015)). Both hypotheses contribute to the discussion of determinants of CEO pay’s
behavior, but none offer a complete picture and more theoretical and empirical work is required
to gain better insights into this phenomenon (Jenter and Kanaan (2015)).

In this article we intend to contribute to the analysis of CEOs’ power by proposing a dy-
namic moral hazard model that includes the CEO’s initial level of bargaining power as the state
variable, and analyzes its evolution throughout the infinitely repeated relationship between the
shareholders and the CEO. Given this model’s structure, obtaining closed-form solutions proves
to be elusive, and a good strategy to gain insight into the optimal contracts that result from this
model is through the design and implementation of a numerical algorithm, as in Wang (1997) and
Clementi et al. (2010). Our numerical results indicate that it is plausible that CEOs with even the
same relative risk aversion parameter might show different stationary paths of their bargaining
powers and salaries. This diversity is only explained by the values of the model’s state variable
and its evolution. From our simulation results, we observe that there is a positive relationship
between the agent’s salary and the initial value of their bargaining power; and that the more pow-
erful the incentives, the higher the variability of the CEO’s salary. Moreover, by combining our
theoretical and numerical contributions, we propose an empirical equation that was implemented
in an econometric exercise that includes using model-generated data to validate our selection of
parameter values, and real-life CEO compensation data. Our results indicate that the validity
of our empirical identification depends on the initial value of the CEO’s bargaining power, and
that the proposed empirical equation provides a good approximation for the variation of CEOs’
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bargaining power provided that their initial bargaining power is not too high.

Agency models provide a formal environment to analyze the design of incentive based com-
pensation in the presence of asymmetric information between a company’s shareholders (prin-
cipal) and CEO (agent) (Hölmstrom (1979); Grossman and Hart (1983)). When the owner of
a company delegates the task of managing it to a CEO, a problem of asymmetric information
between the two parties often arises because shareholders are, in general, unable to perfectly
observe whether the CEO is really working or shirking. The fact that shareholders are unable to
observe and/or perfectly monitor the effort that the CEO exerts in performing the assigned task
generates an inefficient allocation of resources. The dynamic principal-agent problem is usually
analyzed as the maximization of the discounted expected utility of shareholders subject to two
main constraints (Spear and Srivastava (1987)). First, the rationality constraint that ensures that
the CEO accepts the contractual arrangement given that the CEO’s lifetime discounted expected
utility will be equal to their reservation utility. Second, the incentive compatibility constraint
that warrants that the CEO chooses a path of optimal effort levels that corresponds to the effort
path that shareholders want to implement. Providing optimal incentives to the CEO is achieved
through two devices: present and future compensation.

Given the conflict of interests between shareholders and the CEO that emanates from the sep-
aration of ownership and control, the structure of the dynamic principal-agent problem makes
it possible to envision it as a multi-objective optimization problem (Goldberg (1989)). The ad-
vantage of using this approach is that we can consider several incentive-provision arrangements
between the principal and the agent in which their utilities have several levels of priority. That
is, we consider that the bargaining power of the principal and the agent define those levels of
priority. This means that we work with the assumption that the principal does not necessarily
impose a contractual arrangement to the agent, as it is assumed by Hölmstrom (1979), Grossman
and Hart (1983), and Spear and Srivastava (1987). Many situations in the real world that involve
optimizing conflicting objectives between two or more parts can be thought as multi-objective
optimization problems (Ehrgott (2005)). Multi-objective optimization problems are character-
ized by a set of alternative and equivalent solutions because of the lack of information about
the relevance of one objective with respect to the others. The set of optimal infinite solutions is
called the Pareto Optimal Frontier.

Our multi-objective approach to the dynamic principal-agent model relates to the question
of what the objective function of a firm should be. According to Milton Friedman (Friedman
(1970)), managers are employees of their shareholders; so, they should simply comply with the
shareholders’ objectives if they do not imply breaking basic societal rules. A prolific discussion
has emerged from this article that has included topics from which Friedman (1970) abstracted
from; such as firms’ responsibilities towards society and towards internalizing externalities they
generate. For instance, Hart and Zingales (2017) propose a model in which there is no separa-
bility from the business side of firms and the ethical side of firms, and conclude that a way that a
firm maximizes shareholders’ welfare is to allow them participate in choosing corporate policies
by voting. Like Friedman (1970), we do not tackle ethical issues related to firms; however, the
results of our strategy of explicitly modeling the CEO’s bargaining power and its evolution allow
us to say that efficiency loss is observed when the distance between CEO’s pay packages and
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their performance in maximizing shareholders’ welfare, defined by their discounted expected
utility, increase. This result is corroborated by our empirical identification of the CEOs’ bargain-
ing power.

The remaining of this paper is organized as follows: in Section 2 the multi-objective dynamic
principal-agent model is presented. In Section 3 we explain the computational strategy used to
numerically approximate the model’s solutions. The stationary and simulation results we obtain
by implementing the computational strategy, described in the previous section, are discussed
in Section 4. In Section 5, we propose an empirical equation to identify the CEO’s bargaining
power and perform an econometric exercise to estimate it. Finally, we offer our concluding
remarks.

2 The Model
In this section, we develop a dynamic principal-agent model based on the standard repeated
moral hazard model of Spear and Srivastava (1987). We assume that time is discrete and that it
goes on until infinity: t = 0, 1, 2, . . . . There are two individuals: a risk neutral principal and a
risk averse agent, who are both discounted expected utility maximizers with a common discount
rate β ∈ (0, 1).

Suppose that the agent has a continuous utility function represented by: v(wt, at), which is
assumed to be bounded, strictly increasing, and strictly concave with respect to wt; and strictly
decreasing and convex with respect to at. The variable wt ≥ 0 is the agent’s salary or present
compensation at the end of every period. The variable at is the agent’s effort choice made at
the beginning of every period, drawn from a compact set A = [a, a], and it is unobservable to
the principal. We also assume that v is either additively or multiplicatively separable in its two
arguments, wt and at.

Every period t ≥ 1 a realization of the output yt, drawn from the compact set Y , is observed
by the principal and the agent. The stochastic relationship between the output realization and the
agent’s effort choice is given by the time-invariant distribution F (yt | at) > 0 for all yt ∈ Y and
for all at ∈ A. Also, we assume that this distribution has a density f and that the distribution of
outputs is i.i.d. from period to period, for a given action.

Now we introduce the agent’s bargaining power in our environment. Assume that at the
beginning of the principal-agent relationship, at t = 0, the agent has an exogenously given bar-
gaining power level, δ0 ∈ [0, 1]; while the principal has a bargaining power of (1− δ0). We see
the agent’s bargaining power constitutes as his ability to extract part of the surplus generated by
their productive activity. Moreover, we assume that, at the moment of signing their contract at
t = 0, the principal and the agent would have already reached an agreement about the evolution
of the agent’s bargaining power which will be dictated by a law of movement. That is, we are
not modelling a situation where the principal and the agent would engage a bargaining process
at each period to determine their respective bargaining power at (Binmore et al. (1986)), but a
situation where both the agent’s initial bargaining power and its law of movement are already
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determined at t = 0.

Furthermore, we assume that the agent’s bargaining power’s law of movement is given by
the function z(δt−1, yt), which maps from [0, 1] into itself. We assume that z is bounded, con-
tinuous, and increasing with respect to both its arguments. We would like to emphasize that
this law of movement is intended to showcase rewards and punishments for good versus bad
performances of the firm. Assuming, as we do, that after signing the contract at t = 0 no more
bargaining will happen between the principal and the agent is simplistic, and a justification for
this assumption can be found in the argument that there are mobility costs for a worker while
changing jobs; see, for instance, Baily (1974). But, on the other hand, it has been documented
that CEOs face important turnover rates after bad industry performance, and, to a lesser extent,
bad market performance Jenter and Kanaan (2015). Hence, this is a caveat of the present model,
but one that will allow us to introduce a framework to study how the ability of the CEO to extract
surplus from this relationship changes through time.

The contract that defines the infinite relationship of the principal and the agent follows
this timeline: At t = 1, given a value of δ0 ∈ [0, 1], the agent decides a1(δ0) ∈ A, output
y1(δ0) = y1(a1(δ0)) is drawn from the distribution F (y | a1(δ0)), and the agent receives a
compensation w1(y1(δ0)). As we have already mentioned, the principal observes y1(δ0) but not
a1(δ0), hence w1(y1(δ0)) only depends on y1(δ0). Consequently, we can write the agent’s com-
pensation at t = 1 as w1(y1(δ0)). The principal receives y1(δ0) − w1(y1(δ0)), and the agent’s
bargaining power for t = 2, δ1(y1(δ0), δ0) ∈ [0, 1] is defined by the agreed-upon law of motion.
See Figure 1 for a graphical representation of the principal-agent relationship at t = 0 and t = 1.

Figure 1: The timeline of the principal and agent relationship at t = 0 and t = 1.

Now assume that the principal and the agent employ history-dependent pure strategies. At
t = 2 and given δ1, the agent decides a2(δ1(y1(δ0), δ0)); then, output y2(δ1(y1(δ0), δ0)) is
drawn from the distribution F (y | a2(δ1(y1(δ0), δ0))). The agent receives a compensation
w2(y2(δ1(y1(δ0), δ0))) and the principal receives y2(δ1(y1(δ0), δ0)) − w2(y2(δ1(y1(δ0), δ0))).
The new agent’s bargaining power is defined by the aforementioned law of movement and it is
equal to: δ2(δ1(y1(δ0), δ0), y2(δ1(y1(δ0)))) ∈ [0, 1]. And, the game is repeated from t = 3, . . .

See Figure 2 for the timeline of the contract at time t.

Therefore, at any time t there is a history of output realizations ht = {(δs, ys+1(δs))}t−1s=0;
with h0 = δ0, such that ys+1(δs) ∈ Y and δs ∈ [0, 1] for all s = 1, 2, . . . , t − 1. The prin-
cipal’s decision is wt(ht), and the agent’s decision is at(ht−1), because the effort decision has
to be made before yt has been realized and given the value of δt(ht−1) at the beginning of the
period. Let π(ht+τ ;ht, at) be the probability distribution of ht+τ conditional on ht and at. This

5



Figure 2: The timeline of the principal and agent relationship at time t.

distribution is recursively expressed in the following way:

dπ(ht+τ | ht, at) = f(yt+τ | a(ht+τ−1))dπ(ht+τ−1 | ht, at)

with
dπ(ht+1 | ht, at) = f(yt+1 | a(ht)).

The value functions that the principal and the agent, respectively, derive from the sub-game
starting from ht are given by:

U(ht, w, a) =

∞∑
τ=0

βτ
∫
Y

[
yt+τ − w(ht+τ )

]
dπ(ht+τ | ht, a),

V (ht, w, a) =

∞∑
τ=0

βτ
∫
Y

v(w(ht+τ ), a(ht+τ−1))dπ(ht+τ | ht, a).

Given sequences δt = {δt(ht−1)} and wt = {wt(ht)}, the sequence at = {at(ht−1)} is
incentive compatible at ht if:

V (ht, w, a) ≥ V (ht, w, a) =

∞∑
τ=0

βτ
∫
Y

v(wt(h
t+τ ), a(ht+τ−1))dπ(ht+τ ;ht, a),

for any other sequence at = {at(ht−1)}, and π is the distribution in the future histories
induced by δt, yt, wt and at.

A contract σδ0t is defined by a history-dependent agent’s effort recommendation at(ht−1),
and a history-dependent agent’s compensation plan wt(ht). The agent’s history-dependent bar-
gaining power values δt+1(ht) are determined by the agreed-upon law of movement. That is, a
contract is given by:
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σδ0t =
{
at(h

t−1), wt(h
t)
}
.

We say that a contract σδ0t is feasible if:

at(h
t−1) ∈ A; ∀ht−1 ∈ ([0, 1]× Y )t−1 ∀t ≥ 1, (1)

0 ≤ wt(ht) ≤ yt; ∀ht ∈ ([0, 1]× Y )t ∀t ≥ 1, (2)

and also the agreed-upon law of motion of the agent’s bargaining power must hold:

δt+1(ht) = z(ht) ∈ [0, 1]; ∀ht ∈ ([0, 1]× Y )t ∀t ≥ 0. (3)

Condition (1) ensures that the agent’s efforts belong to the set of admissible effort values.
Condition (2) requires that the agent’s salary be non-negative and not greater than the current
output. Condition (3) requires that any value of the agent’s bargaining power to be contained in
the interval [0, 1].

In this environment, for any given δt, two conflicting objective functions are simultane-
ously maximized: the ex-ante principal’s discounted expected utility, and the ex-ante agent’s
discounted expected utility, subject to incentive compatibility and feasibility. The expected so-
lution is not a unique contract but a unique series of contracts that satisfies Pareto optimality.

A contract σδ0t is Pareto optimal if there is no other feasible and incentive compatible con-
tract ϕδ0t such that (U(ht, ϕδ0t ), V (ht, ϕδ0t )) � (U(ht, σδ0t ), V (ht, σδ0t )), for all ht. Each Pareto
optimal contract σδ0t maximizes both U(ht, σδ0t ) and V (ht, σδ0t ) subject to feasibility, and in-
centive compatibility: V (ht, wt, at) ≥ V (ht, wt, at), for all ht and for all at.

As stated in the previous paragraph, we formulate the dynamic relationship between the
principal and the agent that as a multi-objective optimization problem in which both the dis-
counted expected utility of the principal and of the agent are simultaneously optimized subject
to feasibility and incentive constraints. Notice that we omit the participation constraint since we
do not include in this model the agent’s reservation utility, and, this modelling decision could
prove to be advantageous because it circumvents the potential time inconsistency problem that
might arise from having a forward-looking constraint (the participation constraint in principal-
agent environments), as analyzed by Marcet and Marimon (2019). Therefore, we can proceed to
transform this problem into a static variational one as in Spear and Srivastava (1987).

The continuation profile from time t + 1 onwards for contract σδt at any t, where δ is the
initial bargaining power of the agent, given ht, is determined by σδt | ht. This implies a contin-
uation value from time t+ 1 onwards of U(σδt | ht) for the principal, and of V (σδt | ht) for the
agent.

A contract σδt is temporary incentive compatible if, for all t and for all ht:
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at(h
t−1) ∈ arg max

a∈A

∫
Y

[v(wt(h
t), a) + βV (σδt | ht)]f(yt; a)dyt. (4)

This constraint ensures that there will be no deviations in the optimal path of the agent’s
effort decisions, for any δt. Furthermore, in order to ensure the validity of the first order ap-
proach to this incentive compatibility constraint, we assume that the Monotone Likelihood Ratio
Property and the Convexity of the Conditional Distribution Condition are satisfied, following
Rogerson (1985).

For every δ ∈ [0, 1], define W(δ) as the set of the principal’s and the agent’s discounted
expected utility values that are generated by contracts that are feasible, incentive compatible,
and characterized by the agent’s initial bargaining power given by δ and the agreed-upon law of
motion z, as follows:

W(δ) = {(U(σδ | h0), V (σδ | h0)) | ∃ σδ s.t. (1), (2), (3), and (4)}.

Proposition 1 W(δ) is compact for all δ.2

Given that a unique series of Pareto optimal contracts exists, we will characterize it in a
Bellman equation From Proposition 1, we define (U∗(δ), V ∗(δ)) as the Pareto optimal values of
the principal’s and the agent’s discounted expected utilities, respectively, that belong to W(δ).
Now, let Γ be an operator that maps from the space of the Cartesian product of two spaces of
continuous and bounded functions, one for the principal and one for the agent, into itself with
the sup∗ norm, defined as sup∗ = sup(sup, sup). Given that the functions (U(δ), V (δ)) defined
on a compact set are bounded and continuous, we can express the operator sup∗ as follows:
sup∗ = max(sup, sup). The function U(δ) : W(δ) → R is bounded because the principal’s
rewards are bounded, and the function V (δ) : W(δ) → R is also bounded because the agent is
risk averse and his compensations are bounded. Also, the problem Γ should be understood as a
multi-objective optimization problem, and its solutions, in the non-negative orthant, are Pareto
optimal or non-dominated, Sawaragi et al. (1985). Hence, for all (U(δ), V (δ)) ∈ W(δ):

Γ(U, V )(δ) = max
w(δ,y),V (δ,y),U(δ,y)

{U(δ), V (δ)}

where:

U(δ) =

∫
Y

[y − w(δ, y) + βU(δ, y)]f(y; a∗(δ))dy,

V (δ) =

∫
Y

[v(w(δ, y), a∗(δ)) + βV (δ, y)]f(y; a∗(δ))dy;

subject to

a∗(δ) ∈ arg max
a(δ)∈A

∫
Y

[v(w(δ, y), a(δ)) + βV (δ, y)]f(y; a(δ))dy, (5)

2The proof is in Appendix 7.1.
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0 ≤ w(δ, y) ≤ y ∀ y ∈ Y, (6)

δ′ = z(δ, y) ∈ [0, 1], (7)

(U(δ, y), V (δ, y)) ∈ W(δ′) ∀ y ∈ Y, (8)

where (5) is the incentive compatibility constraint; (6) indicates the agent’s temporary in-
ability to borrow; (7) guarantees that the future vale of the agent’s bargaining power belongs
to the interval [0, 1], and (8) ensures that the principal’s and the agent’s future utility plans are
feasible. We now establish that (U∗(δ), V ∗(δ)) is a fixed point of Γ.

Proposition 2 (U∗(δ), V ∗(δ)) = Γ(U∗, V ∗)(δ), ∀δ ∈ [0, 1].3

The operator Γ satisfies Blackwell’s sufficient conditions for a contraction, and the contrac-
tion mapping theorem ensures that the fixed point (U∗(δ), V ∗(δ)) is unique for all (U, V ) ∈
W(δ). This means that along the resulting Pareto Frontier, PF ∗, there exists only one pair if
maximal values of the principal’s and the agent’s discounted expected utilities, given a value of
δ, for all (U, V ) ∈ W(δ); and vice-versa. Now, PF ∗ must be non-increasing because otherwise
either the principal or the agent can achieve a higher level of discounted expected utility and the
other individual would be better off (Spear and Srivastava (1987)).

According to Hernández-Lerma and Romera (2004), our multi-objective dynamic optimiza-
tion problem admits the following Pareto Weights representation with δ as the state variable:

max
w(δ,y)

[δV (δ) + (1− δ)U(δ)]

subject to constraints (5), (6), (7), and (8). Notice that each objective function has a level of
priority associated; that is, δ is the priority assigned to the ex-ante agent’s discounted expected
utility, and 1− δ is the priority assigned to the ex-ante principal’s discounted expected utility.

In the next section we propose a methodology to numerically approximate the Pareto Fron-
tier derived from this model.

3 Computational Strategy
In this section, we present the computational strategy we devised to numerically approximate
the optimal solutions of a parameterized version of the multi-objective dynamic principal-agent
model proposed in the previous section. First, we will present the algorithms that outline our
computational strategy, then we will specify the functional forms and parameter values we used
in our computational program.

3The proof is in Appendix 7.2.
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3.1 The Computational Algorithm
In this sub-section we present two algorithms that outline the computational program we de-
signed to obtain a numerical solution of the model we propose in this article. 4 Algorithm 1
refers to the process of finding the admissible values of the state variable δ. That is, we find
the minimal admissible values of the state variable, δmin , and the maximal admissible value
of this variable, δmax. Then, we discretize the space of the admissible values that δ can take.
In the second part of our computational strategy we proceed with the recursive process of find-
ing the stationary solution of the Bellman equation for the Pareto Weights representation of our
multi-objective dynamic principal-agent model. That is, we iterate the Bellman Equation until
convergence is achieved, see Algorithm 2.

3.2 Functional Forms and Parameter Values
In this sub-section, we enlist a series of assumptions regarding functional forms and parameter
values we made with the purpose of implementing the computational strategy presented in the
previous sub-section.

The principal’s temporary utility function is: u(y, w(y, δ)) = y−w(y, δ). The agent’s tem-
porary utility function is: v(w(y, δ), a(δ)) = w1−h(y,δ)

1−h − a2(δ), where 0 < h < 1. Notice that
the agent’s temporary utility function is of the CRRA type with respect to current compensation,
and that the coefficient of relative risk aversion is h, where higher degrees of relative risk aver-
sion are observed with higher values of h. The agent’s feasible effort choices are discrete and
belong to the set A = {aL, aH}, where aL is the low effort choice and aH is the high effort
choice.

Also, there are two levels of output: low (L) or high (H), described by the set Y = {yL, yH}.
The probability function that formalizes the stochastic relationship between effort and output is:

f(yL; aL) = f(yH ; aH) =
2

3
,

f(yH ; aL) = f(yL; aH) =
1

3
,

and these probabilities capture the idea that the higher the agent’s effort level choice is, the
greater the likelihood of the realization of the high output level.

The law of motion that we propose for the agent’s bargaining power is:

δ′ = z(δ, y) =

{
min{1, δ + ε · y

yH
} if y = yH ,

max{0, δ − ε · y
yH
} if y = yL.

where ε is an arbitrarily small and positive number. This law of motion complies with our

4For more details, see Appendix 7.3.
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Algorithm 1 Admissible Values of State Variable δ

Require: δmin > 0 . Find δmin
w← (wH , wL)

EVi(w)←
[
f(yH ; ai)

(
w1−h
H

1−h − a
2
i

)
+ f(yL; ai)

(
w1−h
L

1−h − a
2
i

)]
, i = H,L

EUi(w)← [f(yH ; ai) (yH − wH) + f(yL; ai) (yL − wL)] , i = H,L
δ0 ← 0
EV ∗i (0)← max

0≤w≤y
{δ0EVi(w) + (1− δ0)EUi(w)} , i = H,L . s.t. (5) and (6)

EV ∗ ← max{EV ∗i (0)}, i = H,L
EV ∗∗ ← EV ∗

t← 0
while EV ∗ = EV ∗∗ do

t← t+ 1
δt ← δt−1 + ∆ for t = 1, 2, ...; where ∆ > 0 is arbitrarily small
EV ∗i (t)← max

0≤w≤y
{δtEVi(w) + (1− δt)EUi(w)} , i = H,L . s.t. (5) and (6)

EV ∗∗ ← max{EV ∗i (t)}, i = H,L
end while
δmin ← δt

Require: 0 < δmax < 1 . Find δmax
δ0 ← 1
EV ∗i (0)← max

0≤w≤y
{δ0EVi(w) + (1− δ0)EUi(w)} , i = H,L . s.t. (5) and (6)

EV ∗ ← max{EV ∗i (0)}, i = H,L
EV ∗∗ ← EV ∗

t← 0
while EV ∗ = EV ∗∗ do

t← t+ 1
δt ← δt−1 + ∆ for t = 1, 2, ...; where ∆ > 0 is arbitrarily small
EV ∗i (t)← max

0≤w≤y
{δtEVi(w) + (1− δt)EUi(w)} , i = H,L . s.t. (5) and (6)

EV ∗∗ ← max{EV ∗i (t)}, i = H,L
end while
δmax ← δt
N ← (δmax−δmin)×2

ε+1 ; where ε > 0 is arbitrarily small . Discretize δ
K ← 0
while K ≤ N do

K ← K + 1
D(K)← δmin + K−1

N−1 [δmax − δmin]
end while
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Algorithm 2 Stationary solution of Bellman Equation

w← (wH , wL)
K ← 0
while K ≤ N do

K ← K + 1
S0(K)← 0 . Initialize value function at zero
U0(K)← 0 . Initialize principal’s future utility at zero
V0(K)← 0 . Initialize agent’s future utility at zero

end while
t← 0
while St 6= St−1 do

K ← 0
P ← 1
Q← 1
while K ≤ N do

K ← K + 1
P ← min(K + 2, N) . Index of δ′ at yH
Q← max(K − 1, 0) . Index of δ′ at yL
EV it (K;w)←

[
f(yH ; ai)

(
w1−h
H

1−h − a
2
i + βVt−1(P )

)
+ f(yL; ai)

(
w1−h
L

1−h − a
2
i + βVt−1(Q)

)]
,

i = H,L
EU it (K;w)← [f(yH ; ai) (yH − wH + βUt−1(P )) + f(yL; ai) (yL − wL + βUt−1(Q))],

i = H,L
Sit(K)← max

0≤w≤y

{
D(K)EV it (K;w) + (1−D(K))EU it (K;w)

}
, i = H,L . s.t.

(5) and (6)
St(K)← max{Sit(K); i = H,L}

end while
t← t+ 1

end while
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assumptions about the function z(δ, y), and it provides incentives in the form of a greater next-
period bargaining power if output yH is observed, and a punishment in the opposite direction if
output yL occurs at the current period. We interpret the parameter ε as a measure of how closely
future values of the CEO’s bargaining power represent rewards or punishments for good versus
bad performances of the firm. An additional assumption behind this proposed law of motion is
that the principal is more generous with the rewards than astringent with the punishments for
increments in the next-period agent’s bargaining power are equal to ε whereas reductions in the
next-period agent’s bargaining power are lower than ε. This assumption is based on asymmetri-
cal responses that have been observed in CEO pay in the face of good versus bad outcomes, see
for instance Gopalan et al. (2010) and Bell et al. (2021).

Our set of parameters are the following:

h = 1
2 ; β = 0.96; Y = {yL = 0.4, yH = 0.8}; A = {aL = 0.1, aH = 0.2}; ε = 0.001.

Finally, we must say that our numerical exercise should not be taken as a calibration exercise.

4 Results
In the present section, we show some of the stationary and simulation results of our numerical
implementation.5 Both sets of results provide a different but complementary visions of the model
proposed in this article. As a robustness test, we also obtain numerical results of related mod-
els, considered as benchmark or reference models: the standard dynamic principal-agent model
(SDPA), the multi-objective static principal-agent model (MOSPA), the multi-objective dynamic
principal-agent model with no dynamics for the agent’s bargaining power (MODPA1), and the
full-fledged multi-objective dynamic principal-agent model with dynamics for the agent’s bar-
gaining power (MODPA2). 6

4.1 Stationary Results
First, in Figure 3 we present our Pareto Frontier results considering the four models that we have
already mentioned. In part (a) of this figure, we can observe that the Pareto Frontiers of the three
benchmark models (SDPA, MOSPA, MODPA1) coincide. Also, in part (b) we show the Pareto
Frontiers of the multi-objective dynamic models without and with dynamics of the agent’s bar-
gaining power (MODPA 1 and MODPA2) for a small value of the parameter ε = 0.001. This
figure shows that the Pareto Frontiers associated with all the models considered here are identical
for this value of ε, which establishes a baseline case from which to analyze further cases. This
figure also presents us with an evidence that each initial value of the agent’s bargaining power
has an associated agent’s reservation utility level, see Curiel et al. (2022) for a static analysis.

Figure 4 depicts the Pareto Frontiers we obtained from model MODPA2 by changing some

5Further information is available here: https://github.com/genarobasulto/Project-Dynamics-of-Bargaining-Power
6See Appendix 7.4 for more details about these models.
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Figure 3: Pareto Frontier: Model Comparison

(a) Single objective and multi-objective approach (b) Bargaining dynamics and no dynamics

parameter values. In panel (a), we show results obtained from varying the values of the parame-
ter ε, which in the baseline case has a value of ε is 0.001. We consider the following additional
values for this parameter {0.02, 0.01, 0.005, 0.0005}. Our objective is to understand the impact
of values of ε that are higher and lower than 0.001 on the Pareto Frontier, while keeping the
agent’s relative risk aversion parameter constant at h = 0.5. Our results indicate that as ε in-
creases, the results reveal inferior discounted expected utility values for both the principal and
the agent, and the maximal discounted expected utility that the principal can achieve during the
contractual relationship diminishes. That is, the Pareto Frontier tends to rotate towards the origin
staying fixed at the same maximal value the agent can obtain situated at the extreme in the y-axis
and its extension decreases. In panel (b), the results of an exercise performed for several val-
ues of the agent’s relative risk aversion parameter h are presented. Notice that, in this exercise,
we have considered the following values of h given by {0.1, 0.25, 0.75} as well as the value of
0.5 of the baseline case. Our results show that as the agent’s risk aversion parameter decreases;
that is, the agent is less risk averse, the Pareto Frontier shifts towards the origin producing com-
binations of discounted expected utility values for both the principal and the agent that are lower.

Figure 5 renders our results concerning the agent’s promised discounted expected utilities,
or future compensation, for the models we have considered in this analysis. In all the models,
the agent’s promised discounted expected utility (for high and low outputs) has a positive and
linear relationship with the agent’s current utility, and for the values of the parameters considered
here (ε = 0.001 and h = 0.5), there is no difference in the promised utilities for the different
output levels. So, for this set of parameter values, future compensation is not the incentive tool
the principal uses. In addition, Figure 6 depicts the same results as in the previous figure but
having as the independent variable the state variable of our dynamic model. The results show
that there is an increasing and non-linear relationship between the agent’s bargaining power and
their next-period promised discounted utility. Moreover, the relationship between the two vari-
ables is observed to follow a bell-shaped curve; in particular, for lower values of the parameters
ε in the first panel and h in the second panel. On the other hand, the distance in this policy rule
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Figure 4: Pareto Frontier: Parameter Comparison

(a) Different Values for ε (b) Different Values for h

for high and low output realizations decreases with ε, while there is no observed distance when
considering different values of the relative risk aversion parameter.

Figure 5: Agent’s Promised Discounted Expected Utilities: Model Comparison

(a) Single objective and multi-objective approach (b) Bargaining dynamics and no dynamics

Figure 7 illustrates the agent’s promised bargaining power results for high and low output
realizations, given different parameter values. In panel (a), we show the results when the pa-
rameter ε changes. The baseline value for ε is 0.001, and the other values considered here are:
{0.02, 0.01, 0.005, 0.0005}. We observe that as ε increases, the distance between the agent’s
promised bargaining power results for high and low output realizations also increase. That is,
the higher the value of ε, the lower the insurance level the agent receives. In panel (b), we present
similar results when varying the agent’s relative risk aversion parameter, which seems not to in-
fluence the difference between the agent’s promised bargaining power results for high and low
output realizations.
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Figure 6: Agent’s Promised Expected Utility on Current Bargaining Power: Parameter Compar-
ison

(a) Different Values for ε (b) Different Values for h

Figure 7: Agent’s Promised Bargaining Power: Parameter Comparison

(a) Different Values for ε (b) Different Values for h

Figure 8 presents the results we obtained for the agent’s present compensation (salary) for
high and low output realizations, for the different models we include in our analysis. In panel
(a), we show the results for the following models: SDPA, MOSPA, and MODPA1. The three
models have the same results and the agent consistently gets a higher salary when the low out-
put realization is obtained when compared to the salary for the low output realization. However,
when comparing the full-fledged multi-objective model with dynamics for the agent’s bargaining
power versus the multi-objective model without such a dynamics, we observe that in the full-
fledged model, salaries are equal regardless the output realization. That is, in the full-fledged
model, the preferred incentive tool is the agent’s promised bargaining power and neither future
nor present compensations provide incentives in this model.
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Figure 8: Current Compensation: Model Comparison

(a) Single objective and multi-objective approach (b) Bargaining dynamics and no dynamics

Finally, in Figure 9 we show the results we obtained for the agent’s present compensation
for high and low output realizations, for the full-fledged multi-objective model but considering
different values for the parameters. In panel (a), the results we obtain when we vary ε are de-
picted, and we conclude that variations in this parameter value do not affect the agent’s salary.
In panel (b), we present the results we get when the parameter h changes, and we can state that
as the agent becomes more risk averse, their salary increases, for a given level of the agent’s
bargaining power. From the results illustrated in Figures 7 and 9, we conclude that it is plausible
that CEOs with even the same relative risk aversion parameter might show different stationary
paths of their bargaining powers and salaries that can only be explained by the agreed-upon law
of motion for their bargaining power at the beginning of the principal-agent relationship. That is,
the initial value of the CEO’s bargaining power and the value of ε in the law of motion determine
the evolution of the optimal contractual arrangements between the CEO and the shareholders.

4.2 Simulation Results
In this sub-section, we present and discuss the results of simulation exercises we performed by
allowing the CEO’s initial bargaining power, δ0, to take four values: {0.1, 0.2, 0.3, 0.4}. The
idea is to analyze the impact of each of those initial conditions on the evolution of the contrac-
tual arrangements between the principal and the agent. We also consider a set of several values of
ε, apart from 0.001 which constitutes our baseline value, given by: {0.02, 0.01, 0.005, 0.0005}.
We allow for 100 contracting periods, and we assume in the exercises that the agent chooses the
high effort level, which implies a higher probability of obtaining the higher firm performance.

In Figure 10 we show the results of the agent’s bargaining power, which has a positive trend
with respect to the contractual periods. This positive trend is explained by the higher probability
of the higher output, given that the agent chooses the high effort level. The agent’s bargaining
power increments are directly proportional to the values of ε; that is, the higher ε, the faster the
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Figure 9: Current Compensation: Parameter Comparison

(a) Different Values for ε (b) Different Values for h

agent’s bargaining power reaches its maximal value, even in the case when the initial value of
the bargaining power is the lowest considered in our simulation exercise, see panel (a).

The simulation results regarding the agent’s salary are presented in Figure 11. We observe
that for lower values of ε and/or δ0, there is a positive relationship between the agent’s salary and
the contractual periods. However, for higher values of ε and/or δ0 we observe greater variability
of salary with respect to the previous contractual period. This behavior is related to the agent’s
bargaining power behavior when they reach values close to their maximal values which show
wiggles. So, when the agent’s reaches faster the maximal values of their bargaining power, they
tend to bring as a consequence a higher variability in their salaries. Finally, the data generated
by these simulation exercises will be used in the next section to perform an econometric analysis
with the purpose of validating some of our parameter values.

5 Econometric Exercise
The numerical results of our model provide a way to estimate the parameter ε that appears in the
proposed functional form for the law of movement z(δ, y), described in subsection 3.2. We in-
terpret this parameter as a measure of of the power of incentives in our model because the higher
the value of ε, the higher the CEO’s level of insurance and the lower the power of incentives.

We begin by considering the results depicted in Figure 9, where we plot the agent’s current
compensation by corresponding values of the bargaining power parameter. The plot shows that
the agent bargaining power can be represented as a concave function of their current compen-
sation. We assume that both the agent compensation and his bargaining power are stochastic at
any period of time, and that this relationship takes the following form:

δt = a+ b
√
wt + et (9)
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Figure 10: Simulation: Agent’s Bargaining Power

(a) δ0 = 0.10 (b) δ0 = 0.20

(c) δ0 = 0.30 (d) δ0 = 0.40

where et are independent and normally distributed errors, with mean 0 and variance σ2 for
all t.

Furthermore, our numerical results allow us to conclude that when the principal holds all of
the bargaining power, the agent compensation will be the lowest possible, which can be normal-
ized to 0 and the parameter a in (9) takes the value of zero. Similarly, the agent will receive the
maximal compensation level when they hold all the bargaining power, and the parameter b in
(9) takes the value of 1/

√
yH . So, from (9) and the results for a and b, we attain the following

equation:

δt =
1
√
yH

√
wt + et. (10)

From the law of motion for the agent’s bargaining power, proposed in sub-section 3.2, we
obtain:

δt+1 = z(δt, y) =

{
min{1, δt + ε · ytyH } if yt = yH ,

max{0, δt − ε · ytyH } if yt = yL.
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Figure 11: Simulation: Agent’s Compensation

(a) δ0 = 0.10 (b) δ0 = 0.20

(c) δ0 = 0.30 (d) δ0 = 0.40

This is equivalent to:

δt+1 − δt = ε

(
(−1)I

−
t
yt
yH

)
,

where I−t is a dichotomous variable that takes the value 0 when yt = yH , and the value 1 other-
wise.

Replacing wt+1 and wt from (10) in the last expression, the following result is obtained:

√
wt+1 =

√
wt + ε

(
(−1)I

−
t

yt√
yH

)
+ ut, (11)

with ut = (et − et+1)
√
yH .

Expression (11) could be used to empirically estimate ε using a time series database with
CEO compensations and company revenues.
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Notice that in (9) a strong assumption is made; that is, the errors et are assumed to be
independent. In a time series setting it is common for the errors to be serially correlated, so
the best way of estimating the regression is to use an auto-regressive moving average (ARMA)
model that accounts for the correlation in order to provide consistent estimators for ε. Another
possibility is to consider panel data with observations from different companies during the same
period of time. Exploiting the structure of panel data could give us more insight on how ε varies
from one company to another and how it affects the CEO’s contractual packages. In the next
two sub-sections, we apply this functional form for an empirical analysis of CEOs’ bargaining
power. The rest of the present section is structured as follows: First, using data generated by the
simulation exercises, we evaluate parameter values for which this functional form might provide
a good identification. We conclude this section by empirically identifying CEOs’ bargaining
power using real-life CEO compensation data, that we describe in detail in the corresponding
sub-section.

5.1 Testing with simulation data.
In this sub-section we present an econometric exercise using the simulation data that we pre-
sented in the previous section. The objective is to identify sets of values for our parameters for
which the functional form given by equation (11). In Table 1 we show the results of running
the linear regression: log(δt) = β log(wt). Given the parameter values of our numerical imple-
mentation, we expect to obtain estimates of β̂ close to 0.5, and our results indicate that that such
estimates are close to this value for several values of ε.

Table 1: Regression Results on shape of bargaining power on expected compensation.

Dependent variable:

log(Deltas)

ε = 0.001 ε = 0.005 ε = 0.01

log(exp comp) 0.554∗∗∗ 0.554∗∗∗ 0.553∗∗∗

(0.003) (0.007) (0.010)

Observations 901 181 91
R2 0.969 0.969 0.969
Adjusted R2 0.969 0.969 0.969
Residual Std. Error 0.298 (df = 900) 0.299 (df = 180) 0.301 (df = 90)
F Statistic 28,118.090∗∗∗ 5,618.442∗∗∗ 2,812.328∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Then we proceed to run a regression for implementing equation (11). In Table 2 we sum-
marize the results we obtain by using model-generated data for 100 contractual periods for dif-
ferent values of ε and different values of the state variable, δ0. The first section corresponds to
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ε = 0.001; and we observe that when the initial value of the agent’s bargaining power is 0.10,
the ε-estimate is the real value in the model. Furthermore, when those initial values belong to the
interval [0.20, 0.30], the ε-estimate is close to its real value and statistically significant. However,
when δ0 = 0.40, the estimate of ε cannot be considered as a good approximation, it even has a
negative sign. These results indicate that when the initial value of the agent’s bargaining power
is low, our proposed dynamics explains well the relationship between the agent’s compensation
and the firm’s performance. On the other hand, when the initial value of the agent’s bargaining
power is high, the dynamics seems to change. From Figure 11, we can state that when the ini-
tial value of the agent’s bargaining power is high, compensation is in a stationary state; that is,
it does not grow because it has reached the maximum value possible, and it does not decrease
either because the agent is still exerting high effort levels. Therefore, the results we observe for
high values of the state variable are expected.

The second and third blocks of the table correspond to the following set of values: ε =

{0.05, 0.01}, respectively. We notice that the lower the value of ε, the lower the values of
the state variable for which we obtain good estimates of ε. So, if we expect that the agent’s
bargaining power does not change much from one period to the next, we will be able to estimate
this change correctly. A hypothesis is that this is due to the linearity of our dynamics because
if the real dynamics is a function of a higher order as ε grows, so do the region where we are
approximating and the errors.

5.2 Empirical Identification
In this subsection, we perform a regression analysis to empirically identify equation (11). To
achieve this goal, we use two databases from S&P Global Market Intelligence. The first database
is the Compustat’s Snapshot database which contains annual financial data from 24,657 compa-
nies with headquarters in the United States territory, ranging from the year 1998 to 2022. Sec-
ondly, we use the Capital IQ’s Compensation Detail database which contains compensation data
from 46,256 different CEOs of companies based in the United States from the year 1999 to 2020.

The main variable of interest in the Compustat’s Snapshot database is the annual Earnings
Before Interest and Tax (EBIT) from each company, which we identify as the companies’ output
yt for our econometric implementations. The measure we use for CEO current compensation is
reported in the Compensation Detail database, and it is Total Compensation (Salary + Bonus).
We also include a measure of CEO’s compensation that includes the already mentioned To-
tal Compensation and the present value of two measures of CEO’s future compensation: Long
Term Incentive Plans (LTIP) and Value of Options Granted. Each one of these variables were
adjusted accounting for inflation taking the base year as 1999. We then classified the above mea-
sures by director and fiscal year of observation and merge the databases. After data cleaning, our
final panel sample consists of annual observations of 8,327 CEOs from the fiscal year 1999 to
2020, and this yields a total of 68, 190 observations. Descriptive statistics from the final sample
are shown in Table 3. The average EBIT among all companies and all years is approximately
$503.34MM, while the executives’ average salary, total compensation and Total Compensation
plus LTIP and Value of Options Granted are about $0.41MM, $0.5MM, and $2.15MM, respec-
tively.
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Table 2: Regression Results Using simulated data.

Dependent variable:

y

ε = 0.001 (δ0 = 0.10) (δ0 = 0.20) (δ0 = 0.30) (δ0 = 0.40)

X 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗ −0.048∗∗∗

(0.00002) (0.00002) (0.00003) (0.008)

R2 0.986 0.985 0.985 0.263
F Statistic (df = 1; 99) 6,954.480∗∗∗ 6,667.812∗∗∗ 6,483.073∗∗∗ 35.355∗∗∗

ε = 0.005

X 0.009∗∗∗ 0.008∗∗∗ −0.035∗∗∗ −0.116∗∗∗

(0.0002) (0.002) (0.012) (0.018)

R2 0.950 0.202 0.083 0.301
F Statistic (df = 1; 99) 1,893.272∗∗∗ 25.006∗∗∗ 9.005∗∗∗ 42.633∗∗∗

ε = 0.01

X −0.037∗∗∗ −0.059∗∗∗ −0.069∗∗∗ −0.099∗∗∗

(0.013) (0.015) (0.015) (0.017)

R2 0.074 0.134 0.177 0.253
F Statistic (df = 1; 99) 7.934∗∗∗ 15.261∗∗∗ 21.302∗∗∗ 33.474∗∗∗

Observations 100
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Data Summary

Variable Mean Standard
Deviation

Unique
Values

Min Max

1 salary 0.41 0.2 44,427 0.0550 1.3288
2 total comp. 0.5 0.34 48,906 0.0971 3.0984
3 total comp. + LTIP

+ Value of Options
Granted

2.15 2.18 67813 0.1399 17.3610

4 ebit 503.34 885.22 22,266 3.1325 11,066.1107
5 age 54.24 7.4 69 28 96
6 gvkey - - 2,060 - -
7 execid - - 8,327 - -
8 year - - 22 1999 2020
9 state - - 53 - -

10 inflation rate 0.02 0.01 22 -0.003 0.0383
11 Y 0 0.11 54191 -1.1443 1.0907
12 I− 0.69 0.46 2 0 1
13 I−1 0.61 0.49 2 0 1
14 X -9.78 16.62 22286 -105.1955 51.8344
15 X1 -7.47 15.42 22286 -86.3376 40.6622

Next, we compute the variables:

Yit =
√
wi,t+1 −

√
wi,t

and

Xit =
(

(−1)I
−
it yit/

√
yiH

)
,

where i indexes the CEO and t indexes time, H refers to the high output realization, I− is
a dichotomous variable, already defined in the previous sub-section, that takes the value 0 when
yt = yH and the value 1 otherwise. In the data the mean of I−, measures the proportion of times
in which the companies’ performance was closer to its highest value than its lowest. In table 3,
the variables Y , I− and X are computed using company EBIT and total CEO compensation,
the variables I−1 and X1 are computed using total CEO compensation plus LTIP and Value of
Options Granted.

We run three regression models where the associated coefficient of X is the parameter ε of
our model, using EBIT and Total Current Compensation. The results of these regressions are
summarised in Table 4. The first model, OLS1, is a simple linear model adjusted by OLS with
only the variable X as regressor. Notice that even in this model the estimate for ε is positive and
small, as in our theoretical approach, and it is statistically significant at 1%. However, this first
approach does not take into account the panel structure of the data. We take this in consideration
and run a fixed effects model with a within estimation. The results are shown in column (3), and
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we observe that the estimator for ε is still statistically significant at 1% and stays well within the
order of magnitude we use for the numerical approach. We run a second OLS model, OLS2, in
which we add additional controls, such as the state where the company is based and the CEO
age, with the objective of obtaining a better estimation for the effect of ε in the model by limiting
the influence of unidentified variables. The results from this regression are shown in column (2)
of Table 4. When controlling with factors such as geographical location and company age, we
obtain an estimate for ε that is positive and statistically significant at 1%, and the geographical
location and the CEO’s age are also statistically significant at 1%. Given that the variation of
the estimate for ε are of very small numerical magnitude, our results are consistent with what
is reported in (Jenter and Kanaan (2015)) with respect to present compensation, that its growth
shows an increasing pattern but that it not as dramatic as the one that future compensation mea-
sures show.

Following Bell et al. (2021), we run additional regressions using a measure of CEO com-
pensation that not only includes the elements of the measure Total Compensation used in the
previous regressions, but it also includes the present value of two instances of future compensa-
tion: LTIP and Value of Options Granted. The purpose of this additional exercise is to observe
whether the estimate of ε significantly changes by including the present value of future CEOs
compensation, which is the part of CEO compensation that has been observed to increase dra-
matically since the decade of the ’90s, see Jenter and Kanaan (2015). Table 5 shows the results
obtained with this new measure of compensation, and we conclude that the estimates’ numerical
values are slightly higher but very close to those shown in the previous table. So, our results
indicate that even by including in the compensation measure the present value of two instances
of future compensation, the bargaining power of the real-life CEOs included in this sample show
small variations from period to period.

6 Conclusions
This paper contributes to the literature of dynamic moral hazard by proposing a multi-objective
dynamic principal-agent model with the CEO’s initial bargaining power as the state variable,
which contrasts with the agent’s reservation utility that has been the usual state variable in re-
peated principal-agent models. Moreover, we introduce a law of motion that governs the evo-
lution of the agent’s bargaining power characterized by awarding measurable increases or de-
creases in the next-period CEO’s bargaining power level according to high or low, respectively,
output realizations. Another feature of this law of motion is that it includes an arbitrarily small
and positive parameter, ε, that can be interpreted as a measure of the power of the incentives
provided by this system of rewards/punishments.

From the results we obtain from the implementation of a numerical algorithm that we de-
vised, we can state that it is plausible that agents with even the same relative risk aversion param-
eter might show different stationary paths of their bargaining powers and salaries. This diversity
is only explained by the values of the model’s state variable and its law of motion. Our simula-
tion results indicate that the level and variability of the CEO’s salary is positively linked to the
initial values of the CEO’s bargaining power; whereas the relationship is negative between the
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Table 4: Regression Results Using EBIT and Total Current Compensation.

Dependent variable:

Y

OLS1 OLS2 panel
linear

(1) (2) (3)

X 0.0001∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗

(0.00001) (0.00001) (0.00002)

as.factor(state)AL 0.072∗∗∗

(0.003)

as.factor(state)AR 0.077∗∗∗

(0.003)
...

...
...

...

as.factor(state)WY 0.076∗∗∗

(0.010)

age −0.001∗∗∗

(0.00003)

Observations 68,190 68,190 68,190
R2 0.0003 0.031 0.003
Adjusted R2 0.0003 0.030 −0.136
Residual Std. Error 0.058 (df = 68189) 0.057 (df = 68135)
F Statistic 18.785∗∗∗ 39.139∗∗∗ 162.645∗∗∗

(df = 1; 68189) (df = 55; 68135) (df = 1; 59862)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Regression Results Using EBIT and Total Current Compensation + LTIP + Value of
Options Granted.

Dependent variable:

Y

OLS panel
linear

(1) (2) (3)

X 1 0.0003∗∗∗ 0.0002∗∗∗ 0.0004∗∗∗

(0.00003) (0.00003) (0.00004)

as.factor(state)AL 0.067∗∗∗

(0.006)

as.factor(state)AR 0.073∗∗∗

(0.006)
...

...
...

...

as.factor(state)WY 0.053∗∗

(0.021)

age −0.001∗∗∗

(0.0001)

Observations 68,091 68,091 68,091
R2 0.002 0.009 0.002
Adjusted R2 0.002 0.009 −0.137
Residual Std. Error 0.113 (df = 68090) 0.113 (df = 68036)
F Statistic 151.316∗∗∗ 11.616∗∗∗ 129.902∗∗∗

(df = 1; 68090) (df = 55; 68036) (df = 1; 59766)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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variability of the CEO’s salary and the value of the parameter ε. That is, the more powerful the
incentives, the higher the variability of the CEO’s salary.

Finally, we propose an empirical equation to identify the bargaining power values of real-
life CEOs based on our theoretical and numerical results. We perform a regression analysis and
estimate the parameter ε. By using model-generated data, we arrive to the finding that when the
initial value of the agent’s bargaining power is low, our proposed dynamics explains well the
relationship between the agent’s compensation and the firm’s performance. But we also observe
that for high values of the agent’s bargaining power the proposed dynamics does not explain well
such relationship. By analyzing a panel sample of annual observations for 9,084 CEOs from the
fiscal year 1999 to 2020 constructed from the Compustat’s Snapshot database, we observe that
the sign and magnitudes of our estimates for ε are positive, of a small numerical magnitude and
statistically significant at 1% both for the measure of present compensation (salary + bonus)
and the measure that includes present compensation and the present value of two instances of
future compensation. Moreover, the estimates for both set of regressions are very similar in
term of numerical value, which allows us to state that indicate that even by including in the
compensation measure the present value of two instances of future compensation, the bargaining
power of the real-life CEOs included in this sample show small variations from period to period.

7 Appendix

7.1 Proof of Proposition 1
Proof. Let δ be arbitrary fixed. W(δ) is bounded. We need to prove thatW(δ) is also closed.
Let {(Un(δ), V n(δ))} ∈ W(δ) such that lim

n−→∞
{(Un(δ), V n(δ))} = {(U∞(δ), V∞(δ))}. We

have to show that {(U∞(δ), V∞(δ))} ∈ W(δ), or that there exists a contract σδ,∞ that satisfies
(1), (2), (3), (4), U(σδ,∞ | h0) = U∞(δ), and V (σδ,∞ | h0) = V∞(δ). We construct this
optimal contract σδ,∞. The definition of W(δ) allows us to say that there exists a sequence of
contracts {σδ,n} = {aδ,nt (ht−1), wδ,nt (ht)} that satisfies (1), (2), (3), and (4), ∀n. Hence,

U∞(δ) = lim
n−→∞

∞∑
t=0

βt
∫
Y

(yt − wδ,nt (ht)f(yt; a
δ0,n
t (ht−1))dht,

V∞(δ) = lim
n−→∞

∞∑
t=0

βt
∫
Y

(v(wδ,nt (ht), aδ,nt (ht−1))f(yt; a
δ,n
t (ht−1))dht.

At t = 1, σδ1 = {aδ,n1 (h0), wδ,n1 (h1)} is a finite collection of bounded sequences, so there
exists a collection of subsequences {aδ,nq1 (h0), w

δ,nq
1 (h1)} that satisfy:

lim
nq−→∞

a
δ,nq
1 (h0) = aδ,∞1 (h0), and

lim
nq−→∞

w
δ,nq
1 (h1) = wδ,∞1 (h1).

The following law of motion must hold:
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δ
δ,nq
1 (h0) = z(h0).

Also, (U∞(δ), V∞(δ)) must be equal to (U(σδ1 | h0), V (σδ1 | h0)). If V∞(δ) < V (σδ1 |
h0), the agent would not accept this contract given that the principal is obtaining U(σδ1 | h0), and
if V∞(δ) > V (σδ1 | h0), V∞(δ) would not belong toW(δ) because it does violate the principle
of Pareto optimality, given that the principal is getting U(σδ01 | h0). A similar argument proves
that U∞(δ) = U(σδ1 | h0).

Repeating this procedure for t = 2, ...,∞, and letting:

σδ,∞ = {aδ,∞t (ht−1), wδ,∞t (ht)},

we obtain the desired contract σδ,∞.

7.2 Proof of Proposition 2
Proof. Let δ be arbitrary fixed. First, we show that Γ(U∗, V ∗)(δ) ≤ (U∗(δ), V ∗(δ)). This is
true if there exists σδ that is feasible and incentive compatible such that (U(σδ | h0), V (σδ |
h0)) = Γ(U∗(δ), V ∗(δ)). We construct this contract σδ by letting a(δ), w(δ, y), U(δ, y), and
V (δ, y) be the solution to Γ(U∗(δ), V ∗(δ)), and by letting:

a1(h0) = a(δ), and w1(h1) = w(δ, y), ∀h0, h1.

For a given y1 ∈ Y , there exists σδy1 such that the principal receives U(δ, y1) and the agent
receives V (δ, y1). Let

σδ | h1 = σδy1 , ∀h1.

Notice that σδy1 complies with Pareto optimality, because U(δ, y1) = U∗(σδy1 | h
1), and

V (δ, y1) = V ∗(σδy1 | h
1). So, there is no other contract ϕδy1 that is Pareto optimal such

that U∗(ϕδy1 | h
1) and V ∗(ϕδy1 | h

1) dominate U∗(σδy1 | h
1) and V ∗(σδy1 | h

1); that is,
U∗(ϕδy1 | h

1) ≺ U∗(σδy1 | h
1) and V ∗(ϕδy1 | h

1) ≺ V ∗(σδy1 | h
1). So, σδy1 is the contract

we need, and Γ(U∗, V ∗)(δ) ≤ (U∗(δ), V ∗(δ)).

The second part of the proof shows that (U∗(δ), V ∗(δ)) ≤ Γ(U∗, V ∗)(δ). Let σδ∗ be an
optimal contract. Hence,

U∗(δ) = U(σδ∗ | h0) =

∫
Y

[y1 − wδ∗(y1) + βU(σδ∗ | h1)]f(y1; aδ∗(h0))dy1,

V ∗(δ) = V (σδ∗ | h0) =

∫
Y

[v(wδ∗(y1), aδ∗(h0)) + βV (σδ∗ | h1)]f(y1; aδ∗(h0))dy1,

and
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(U∗(δ), V ∗(δ)) ≤ Γ(U∗, V ∗)(δ);

if we set a(δ) = aδ∗(h0),w(δ, y1) = wδ∗(y1),U(δ, y1(δ1)) = U∗(σδ∗ | y1), and V (δ, y1(δ1)) =

V ∗(σδ∗ | y1), for y1 ∈ Y ; for (7), (8), and (9) are satisfied. It must be noted that U∗(δ) =

U(δ, y1) and V ∗(δ) = V (δ, y1(δ1)) because, σδ∗ is Pareto optimal; and there is no other con-
tract ϕδ∗ that is also Pareto optimal.

7.3 Computational Algorithm
The first step of the algorithm is to compute the set of admissible values of the agent’s bargaining
power. The objective is to discretize the range of the admissible values of the state variable, δ in
n steps, such that n is sufficiently large given ε.

For this, we define the current expected utilities of the agent and the principal, respectively,
given the the exertion of the high and low effort levels on the part of the agent, respectively:

EVh(wH , wL) =

[
f(yH ; aH)

(
w1−h
H

1− h
− a2H

)
+ f(yL; aH)

(
w1−h
L

1− h
− a2H

)]
,

EVl(wH , wL) =

[
f(yH ; aL)

(
w1−h
H

1− h
− a2L

)
+ f(yL; aL)

(
w1−h
L

1− h
− a2L

)]
,

EUh(wH , wL) = [f(yH ; aH) (yH − wH) + f(yL; aH) (yL − wL)] ,

EUl(wH , wL) = [f(yH ; aL) (yH − wH) + f(yL; aL) (yL − wL)] .

Then, for the minimum bargaining power δmin that guarantees interior solutions, we solve
two optimization problems, one to incentivize the agent to exert low effort and one for high effort.

First, we set δ0 = 0 and solve for the high effort model, as follows:

max
wH ,wL

{δ0EVh(wH , wL) + (1− δ0)EUh(wH , wL)} (HE)

subject to:

EVh(wH , wL) ≥ EVl(wH , wL),

0 ≤ wH , wL ≤ y for all y.

Now, we do the same for the case of the low effort model:

max
wH ,wL

{δ0EVl(wH , wL) + (1− δ0)EUl(wH , wL)} (LE)
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subject to:

EVl(wH , wL) ≥ EVh(wH , wL),

0 ≤ wH , wL ≤ y for all y.

From solving these two problems, we obtain the corner solution: EV ∗∗ = {EVi|δ0EV ∗i +

(1− δ0)EU∗i ≥ δ0EV ∗j + (1− δ0)EU∗j ; i, j = H,L}.

At this point, we iterate δt = δt−1 + ∆, for t = 1, 2, ...; where ∆ is an arbitrarily small and
positive number, and solve the same two problems that we solved for δ0, (HE) and (LE), just
varying δt.

If the solution: EV ∗ = {EVi|δtEV ∗i +(1−δt)EU∗i ≥ δtEV ∗j +(1−δt)EU∗j ; i, j = H,L},
when EV ∗ 6= EV ∗∗ is satisfied, the iteration stops, and we set δmin = δt.

For the maximum admissible bargaining power, we do something similar, this time we set
δ0 = 1, solve (HE) and (LE), and define EV ∗∗ as before. Afterwards, we iterate δt = δt−1−∆,
t = 1, 2, ..., then solve (HE) and (LE). Again, the iteration stops when EV ∗ 6= EV ∗∗, then
δmax = δt.

To finish the first step, we compute the set of admissible values of the agent’s bargaining
power: D = {D(K),K = 1, ..., N}; where N = (δmax−δmin)×2

ε+1 . Notice that this characteriza-
tion of N ensures the step between two consecutive bargaining powers is equal to ε

2 , and:

D(K) = δmin +
K − 1

N − 1
[δmax − δmin].

The second step is to find the stationary solution of the Bellman Equation. We start with an
all-zero guess for the value function S0(K) = 0, ∀K = 1, ..., N ; and initialize all-zero vectors
for the agent and principal expected discounted utilitiesU0(K) = 0, V0(K) = 0, ∀K = 1, ..., N .
Define:

EV Ht (K;wH , wL) =

[
f(yH ; aH)

(
w1−h
H

1− h
− a2H + βVt−1(P )

)
+ f(yL; aH)

(
w1−h
L

1− h
− a2H + βVt−1(Q)

)]
,

EV Lt (K;wH , wL) =

[
f(yH ; aL)

(
w1−h
H

1− h
− a2L + βVt−1(P )

)
+ f(yL; aL)

(
w1−h
L

1− h
− a2L + βVt−1(Q)

)]
,

EUHt (K;wH , wL) = [f(yH ; aH) (yH − wH + βUt−1(P ))+f(yL; aH) (yL − wL + βUt−1(Q))],
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EULt (K;wH , wL) = [f(yH ; aL) (yH − wH + βUt−1(P ))+f(yL; aL) (yL − wL + βUt−1(Q))];

where P = min(K + 2, N), Q = max(K − 1, 0). Notice that the value for P (Q) gives us
the index for δ′ in D when output yH or yL is observed.

Suppose that we are now at the t-th iteration, t ≥ 1:

St(K) = max{Sit(K); i = H,L},

where

SHt (K) = max
wH ,wL

{
D(K)EV Ht (K;wH , wL) + (1−D(K))EUHt (K;wH , wL)

}
;

subject to:

EV Ht (wH , wL) ≥ EV Lt (wH , wL),

0 ≤ wH , wL ≤ y for all y,

and

SLt (K) = max
wH ,wL

{
D(K)EV Lt (K;wH , wL) + (1−D(K))EULt (K;wH , wL)

}
;

subject to:

EV Lt (wH , wL) ≥ EV Ht (wH , wL),

0 ≤ wH , wL ≤ y for all y.

The algorithm stops once we find the stationary solution; that is, St(K) = St−1(K), for all
K = 1, ..., N .

7.4 Benchmark Models
We use three benchmark or reference models in our numerical implementation. Here we present
them:

7.4.1 The Standard Dynamic Principal-Agent Model (SDPA)

A first reference model is the standard dynamic principal-agent model. In particular, we adapt
the model of Wang (1997), which is a model formulated as the maximization of the expected dis-
counted utility of the principal subject to the participation constraint, the incentive compatibility
constraint, and feasibility constraints. The value function is the principal’s expected discounted
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utility is given by:

U(V̂ ) = E[y − w(y, V̂ ) + βU(y, V̂ )],

where y is the observed output,w(y, V̂ ) is the compensation given the observed output y and
β is the discount factor of the principal and the agent. The agent´s lifetime discounted expected
utility is given by :

V (V̂ ) = E[v(w(y, V̂ ), a(V̂ )) + βV (y, V̂ )],

where v(w(y, V̂ )) is the temporary utility function of the agent, and a ∈ A is the effort
exerted by the agent. In addition, V (y, V̂ ) is the agent future discounted utility, which is the
promised expected utility from tomorrow on. V̂ ∈ V is the model’s state variable and it is the
agent’s reservation utility. This is an important difference with respect to our multi-objective
dynamic models given that our models’ state variable is the agent’s initial bargaining power.

The dynamic maximization program is:

max
w(y,V̂ ),V (y,V̂ )

E[y − w(y, V̂ ) + βU(y, V̂ )]

subject to

a(V̂ ) ∈ argmaxa′ V̂ (a′, V̂ ), Incentive Compatible;

V (V̂ , a(V̂ )) = V̂ , Individual Rationality;

a(V̂ ) ∈ A, Feasible Effort;

0 ≤ w(y, V̂ ) ≤ y for all y, Limited Liability;

V (y, V̂ ) ∈ V for all y, Feasible and Incentive compatible V .

Let V(V̂ ) and U(V̂ ) be the set of feasible and incentive compatible expected discounted
utilities of the agent and principal, respectively. Wang (1997) demonstrates that U(V̂ ) is com-
pact. Therefore, by virtue of the Bellman equation, there exists a principal’s maximal expected
discounted utility that is feasible and incentive compatible.

7.4.2 The Multi-Objective Static Model (MOSPA)

A second reference model is the multi-objective static principal-agent model. In this setting, the
static contracting problem is to choose an action a ∈ A and a compensation scheme w(y, δ) ∈
[0, y], ∀y ∈ Y , to maximize the Pareto Weights function of the expected utility of the principal
and that of the agent; that is:

max
a(δ),w(y,δ)

[δv(w(y, δ), a(δ)) + (1− δ)u(y, w(y, δ))],
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subject to

∫
Y

v(w(y, δ), a(δ))f(y; a)dy ≥
∫
Y

v(w(y, δ), a′(δ))f(y; a′(δ))dy ∀a′(δ) ∈ A, (12)

0 ≤ w(y, δ) ≤ y ∀y ∈ Y. (13)

7.4.3 The Multi-Objective Dynamic Model With No Bargaining Power Dynamics (MODPA1)

A third reference model is the multi-objective dynamic principal-agent model with no dynamics
of bargaining power. In particular, we analyze the optimal contractual arrangements having
the agent’s bargaining power, δ, as the model’s state variable, but without the implications of
explicitly including a law of motion for δ. That is, in this version of the model we analyze the
maximization of the Pareto Weights function of the expected discounted utility of the principal
and that of the agent, subject to the feasibility and incentive compatible constraints. This problem
is formulated as follows:

max
a(δ),wδ(yδ,W ),V

δ
(yδ,W ),U

δ
(yδ,W )

[δV δ + (1− δ)U δ],

where:

U(δ) =

∫
Y

[y − w(y, δ) + βU(y, δ)]f(y; a(δ))dy, (14)

V (δ) =

∫
Y

[v(w(y, δ), a(δ)) + βV (y, δ)]f(y; a(δ))dy; (15)

subject to
a(V ) ∈ argmax a′ V̂ (a′, V ), (16)

0 ≤ w(y, δ) ≤ y ∀y ∈ Y, (17)

δ ∈ (0, 1), (18)

(U(y, δ), V (y, δ)) ∈ W(δ′) ∀y ∈ Y. (19)
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