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Introduction

The interest in statistics capable of detecting non-linear dynamics is now well estab-
lished in economics. Developing Grassberger and Procaccia’s (G&P) (1983) Correla-
tion Dimension (CD), Brock et al. (BDS) defined a statistic testing the IID null whose
applications include testing for non-linearity in stochastic processes. Combining these
two approaches Mayer (1995, 1996) defined the Correlation Dimension Ratio (CDR)
(or Statistical Correlation Dimension), a statistic which tests the IID null, calculates
dimensions greater than 1, and eliminates a downward bias present in the G&P and
BDS statistics. In a parallel development, Mizrach (1991) defined the Simple Non-
parametric Test (SNT), a simpler version of these U-statistics which can be applied for
the same purposes and involves less calculation.

The numerical methods introduced by Mayer (1995) to calculate the building
block distance histogram C(m, £) used in these statistics obtains it for many distance
values € simultaneously, and recursively in the dimension m (see the definitions in the
next section), leading to the question wether the information thus obtained can be used
more effectively. The first purpose of this paper is to define some integral U-statistics,
which take averages along the £ variable. In addition, a homogenization process is
introduced after which these statistics have distributions independent of the stationary
process being tested. The objective is to define statistics for which confidence intervals
¢an be obtained universally, either by theoretical means or by Monte-Carlo experiments.

Although U-statistics can be proved to be asymptotically normal, it cannot be
assumed that this convergence is fast enough for empirical purposes, especially in ap-
plications in which data availability is relatively low, a situation which typically holds
for Economic applications. Also the calculation of the asymptotic variance is itself
very lengthy—once the pretty complicated algebraic formulae are obtained. Thus in
practice we are interested in the power of tests using confidence intervals obtained by
boot-strapping methods which originate in Brock’s reshuffling test. The second purpose
of this paper is to define some particular integral statistics and evaluate the correspond-
ing reshuffling tests using a Monte-Carlo experiment. For purposes of comparability
we use for this experiment the non-linear series which Barnett et. al. (1996) used in
their double blind experiment on test of non-linearity.

The sections of this paper are organized as follows. Tn the first, we review the
definitions of the SNT, BDS, CD, CDR and some related statistics, and introduce no-
tation. In the second, we define the process of homogenization alluded to before, In
the third, we define homogenized integral U-statistics. In the fourth, we define some
particular integrals. In the fifth, we describe the Monte-Carlo experiments and report
its results, Then we offer some concluding remarks.
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SNT, BDS, and related statistics

LetZ? = (Z7,...,2%), p = 1,..., N be N copies of an m-dimensional multivariate
random variable Z. Let I be the indicator function,

_ 1l z< Y,
Izy) =9 4 T >y, (1
Define the Order 1 “building block” random variables,
1 N
1 _ . g —

;i (Z,%g,e,N) = ~ ; I()ZF — 204, €), i=1,...,m, (2)

1 N
CYZ, 2,6, N) = WE} I(lzéliagag‘IZf—zmh e). (3)

p:

These random variables can be used to define a whole family of statistics. One example
is the Simple Non-parametric Test (SNT statistic, Mizrach, 1991)

SNT(Z,2y,¢,N) = C'(Z,2,6,N) — [[ c}(Z,2,¢,N). (4)

1<i<m

Another is the Order 1 Ratio Statistic (RS! statistic)

RS (Z,29,6, N) = CY(Z,20,6,N) | [] ci(Z,20,2,N). (5
1<i<m
We can also define two local dimension measures: the Correlation Dimension (CD),
and the Correlation Dimension Ratio (CDR') at z,. We first define

CDYZ,zy,6,N) = n(C"(Z,2q,6,N) } / Ine), (6)
CDRY(Z,zy,¢,N) = In(CHZ,20,5,N))/ > In(c}(Z,25,¢,N)), (7)
1<4<m

and then write

CDYZ,zy) = lim lim CDYZ,2zq,e,N) = lim B(CDY(Z,z4,2,N)), (8
£ —a =—

and similarly for CDR!.
Now define the Order 2 “building block” random variables
. 2
2 Ny= ——— I(|1ZP — z¢ =1, ..
i(ZeN) = gy 2 H0Z =21, e) i=1,0m, ©
req
2
2 -— (s
CUZeN) = Ty Z I(max |2} — Zf), €). (10)
The BDS (Brock, Dechert, Scheinkman) statistic is
BDS (Zg,N) = C*Ze,N) — [] &(z,¢, N). (11)
1<i<m
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This can be modified, for example, to the Order 2 Ratio Statistic (RS? statistic)

RS*(Ze,N) =C*Ze,N)/ [] €(2Z,e N). (12)
1<i<m
The (non-local) Correlation Dimension (CD) defined by Grassberger Procaccia is given
by the limit

CD*Ze,N) =In (C*(Zg,N)) / In(e). (13)
as N — oo and € — 0. The (non-local) Correlation Dimension Ratio (CDR) studied
by Mayer (1995) and Mayer and Feliz (1996) is instead

CDR¥(Zg, N) = In(C*(Z,e,N))/ > In((Zs, N)). (14)
1<i<m
We shall write
o CD*Z) = lim lin CD*(Z,e,N) = lim E(CD(Z&, N)), (15)

and stmilarly for the CDR. In practice the G P and CDR statistics are usually calculated
as regressions of C?(Z,e, N) in terms of C*(Z,e, N) or In(¢) for small values of ¢ .
These are thus more complicated functions of the building block random variables.

Theorem 1 Let Z; be a strictly stationary process which is absolutely regular (A de-

finition is omitted for brevity There are alternative conditions on the rate of decay of
dependence over time yielding the same result, See Denker and Keller 1983, p. 507).

Generically, the building block statistics and smooth functions of them such as the SNT
BDS, RS?, CDV¥ and CDR? statistics are asymptotically normal as N — oc. The later
statistics have means

E(SNT)=0, E(BDS)=0, E(RS")=1, E(CDRF)=1, (16)
(7 =1,2) for any € > 0 and for any zesatisfying E(X(|Z; — 204 ,£)) > 0,i=1,...,m.
The asymptotic variance of the order j statistics depends on the variances and covari-
ances of the building block random variables ¢}, C?,i=1,...,m, j = 1,21

Homogenization of multivariate random variables

We shall write Y : [0, 1] — [0, 1] and 9% RF — [0, 1] for the accumulated density
functions of the standard uniform and normal distributions respectively,

U(2)= 2z, M(2) = \%_T- /-z exp(—t2)dt, (17)

where R® = R | J {—00, 00} is the extended real line (with the one-point compactifi-
cation topology on each extreme). We can thus write 9T (oo}, M ~1(0), M ~1(1), and
write about the uniform and normal distributions in the same terms.

Suppose that Z has thc accumulated density function
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P(Z; <z, i=1,.,m)= F(z1, ..., Zm)- (18)

Definition 1 We shall say that Z is ammenable fo homogenizations if each function
pi(z) =P(Z:<z2),i=1,...,m (19)
is continuous and surjective from its domain of definition (possibly RY) to [0, 1].H

For any continuous, increasing surjective functions G; : I; — [0, 1], where
I; C RPare closed intervals, s = 1, ..., m define the random variables

Xi = (Gi_] Opi)(zi)r t=1,...,m, (20
where (3; ! is the increasing, semi-continuous function satisfying G o G; ! = id defined
by G (y) = inf{z |G(z) = y}. Observe that the random variables X; have accumu-
lated density function &, since

P(Xi: < &) = P(G7'(m:(Z)) £ &) = P(Z, < p; (Gi(2))) = (o7 H{(Gi())) = ?25;;)
(where p;' are defined as G;!). We thus have the following definition.

Definition 2 Write G = (G, ..., G;n). The multivariate random variable just defined,
X = (X4, ..., X;,) is the G-homogenization of Z, and we write X = H(Z).0

In particular, if G; is 4 or M, X; is uniformly distributed on [0, 1] or follows the
standard normal distribution.

In the following theorem we show that in some special cases the homogenization
map f); leaves the order 1 statistics invariant, while in the general case the topological
properties of the order 1 and order 2 statistics are preserved. We write ¢'(Z, zy, ¢, N) =
¢i(Z,z,,¢, N) when Z; are identical random variables.

Theorem 2 If Z,, ..., Z,, are identical random variables, G| = ... = G,, = G, and
zo = 0 0r 2o = (1, ..., 1), then the building block random variables are invariant under

homogenization.
CI(ZPZOJE? N) zcl(Xime_l(p(e))aN)s (22)
OI(Z'J ZU:'E!N) = C] (Xs XO,G—I(IJ(E)),N), (23)
where Xo = ¢(2o) and p is any of the functions p; defined above. Thus the order 1 sta-
tistics are preserved under the homogenization map $¢ if ¢ is transformed accordingly.
Suppose in the general case that the functions p; defined above and G are dif-
Jeomorphisms. Then the homogemzmg transformation 5 is equivalent to applying the
diffeomorphism ¢ = (GT op; . G lop,). Hence the dimension measures CDY, CDR?,
3 =12 satisfy
CDYZ,20) = CD(Hc(Z), #(20)), CDHZ) = CD*$Ha(Z)), (24)
CDR'(Z,2y) = CDRY$¢(Z), ¢(20)), CDR*Z)= CDR(H(2)). (25)
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Proaof: The first statement follows from the equalities
HZ8) = 106,67 p(E), Hmax Z,e) = I(max X, G0 Q26)

The second statement is an application of Brock and Dechert’s results (1988).18

Homogenized integral U-statistics

The purpose of this paper is to explore the statistical properties of variants of the SNT
and BDS statistics when they are applied affer one of the homogenization processes
)y or i, in which the component random variables are transformed into uniform or
normal random variables. Theorem 2.3 shows that these statistics will tend to detect
the same properties as the original ones, and thus we consider them in their own right.

The idea is the following. After the random variables Z are transformed to
X, each X; becomes a uniform or normal random variable. Thus the properties of
these homogenized statistics will no longer depend on the particular distributions F; of
Z;. Indeed, under not very stringent conditions the distributions C'(X, xp, £, N) and
C?*(X, e, N) will be known in the 71D case and thus the confidence intervals of the o-
mogenized statistics will be simpler to obtain. In the more general case in which these
distributions are unknown, results derived by Monte-Carlo methods will be simultane-
ously applicable to all amenable distributions Z.

The statistics we shall consider will be infegral because we shall consider dif-
ferent kinds of averages along . This we do to use more of the information contained
in the building block functions, which is in any case obtained at no extra expense when
the calculations are actually performed.

Suppose Z has identical component random variables 7., ..., Z,,,. We begin by
giving an example which will clarify the motivation behind our definitions. In the study
of the BDS statistic the null hypothesis is

B(C¥(Z, N)) = B(H(Zye, N)™ @7)
As mentioned above, one may carry out a regression for low values of to find d such
that

In(C*(Z,e, N)) = const + d In(*(Z,e, N)), (28)
and then test in some way if d is less than m or not. A natural question is to ask how one
can get additional information from C?(Z,e, N} (which can be calculated at no extra
expense for the full range of ¢ simultaneously). Writing

C*(Z,e) = dim C*Z.e,N) = E(C*(Z,N)), (29)
and similarly for ¢?(Z,¢), integrals such as the following are attractive:
; CH(Z, zg,¢) )” .
¥(Z,z =/ (.—-———1 dd(Z, 2y, €), 30
( 0) @(z,s)ela,b] OJ (Z, Zo ,E)m ( ] ) ( )

where we now consider 7 = 1 or 2, and it is understood that in the case j = 2 there is
no dependence on z,. Other variations can be written down, involving logarithms and

5
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other functional forms. Here we use an LP norm for the sake of example. The measure
de? (Z,zy, €) is attractive because it is proportional to the number of events at €. Notice
that, in the IID case, F(J’(Z, zp) =0. In the case of the order] SNT-type statistics,by
using the change of variable 7 = G~!(p(¢)), we obtain J'(Z, zy) =3 (X, %0). In the
case of the order 2 BDS-type statistics, this transformation does not go through, but we
shall first use the diffeomorphism ¢ = (G o p1,. Gl © py,) to transform Z to X and
then apply J%to X.

We now construct a generalized instance of this type of integral, approximated
in the summation form. (Recall our assumption that Z;  Z,, are identical random vari-
ables.) We begin with the case of order one statistics, [irst defining the more primitive
“building block” random variablcs: '

h(Z, 29,6, N) = ZI P 2066), (31)
p_l
HY(Z,2y,6,N ZI max (ZF — z0:),)- (32)

(where, in comparison to ¢; we have omltted the absolute values; we use any i =
1,...m). As in Theorem 2, if xg = (G~ o p)(2zo),

h'(Z,zg,€, N) = h'(X,%g, (G 0 p) (), N), (33)
and similarly forc!, H'. Let B! = {c h',Ct, H'} be the set of building block random
variables. Given a partition g9 < ... < &7 of the interval [gg, 7] (I € N), let

AgHZ, zo,6x, N) = g4Z, 20,6, N) — §"(Z, Zo,6x-1, N) for g' € BL. (34)
(k = 1,...,I). Write b! for (¢, h!,C?, H?) (the vector of random variables) and let
fi : Rx R' — R be any function. Suppose that fi(Z,e, N) = fi(e,b'(Z,e, N)) is
increasing in ¢, and satisfies [f1{Z,c0, N), fi(Z,er, N)]=[a,8] . Letf : R x R®* = R
be any function. We define

A
G_Ifllfg(zszﬂaa: ba N) = Zf2(5k1 (bls Abl)(z,Zg,Ek, N))Afl(sk, hl(Z,ZQ,Ek,N)).

k=1
(35)

where Ab? = (Ac?, Ahl,CA', AR?). Itis clear that
&} 1, (Z,20,a,b, N) = &}, (X, %0,a,b,N) (36)

and that
Jim  Hm &}, 1,(Z,20,0,0,N) = Jim E(&3, 1,(Z,20,a,b,N)) = T}, ;,(Z,20,a,b)
37
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where
1 , 08! 1
jfnfz(zﬂ Zo,1, b) = fale, (b, —C?_)(Z, zo,€))df1(e, 0™ (Z, zy,£))
fi{ebH{Z,zg.e})Elab] £
(38)
and
9'(Z,z0,8) = lim g'(Z, 20,6, N) = E(g"(Z, 70,8, N)) (39)
for g' € b, so that U/-statistics given by these sums are invariant under $)q.
In the casc of order 2 statistics we shall use
GiJQ(Z,a, b, N) = 6?‘1,1‘2 ($Ha(Z),a,b, N) (40)

as a definition instead of as a result, where the definition of Gf. .5 (X.a, b, N) is obtained
by replacing the 1’s corresponding to the order of the statistic to 2’s, and the building
block variables of order 2 are defined by

2 _ 2 P _
h*(Z,e,N) = NV =1 pE{q I(ZF = Z],¢) (41)
(using any i = 1, ..., m) and
2 _ 2 P __ 4
H*(Z,e,N) = NV =T1) pE(q 1(@%(2‘. Z1),€) (42)

(recall there is no zg).

We shall restrict our attention to homogenizations to the uniform and normal
distributions. In some cases, nonlinear functions of several of these sums will be used.
We shall refer to any of these functions as an integral [/-statistic.

In the case of IID distributions Z, homogenization to the uniform distribution is
a natural operation, because then the support of the building block random variables is
uniformly distributed on the m-cube [0, 1]™. that is, once ¢ is discretized, each of the
building block functions is a sum of random variables of the form I-(Z), where

w@={ 4 55¢ @)

and C is any of the cubes
Ck={xeR™:(k—1)e<x<ke ke {1,..,7T}"} 44
formed by the £ grid (here < holds for each entry, 1 = (1,...1}eN™). This implies
by the law of large numbers that when £™ is not too small (say larger than 20) the
building block random variables are approximately normal. However, the sample on

these random variables is approximately of size TN, which reduces the values of &
for which there is a reasonable sample as n increases.

Some particular integrals

For our Monte-Carlo study we defined and studied the statistics listed in Table 1. It is
understood that in the case of order 2 integrals there is no dependence on zg. We write
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Lr4[a,b] for LP measures taken along the variable £ on the interval [a, b] with measure
i 2 . . .
(dH zéz"’s’N ) de. For ¢ = 1 the integrals involved in these functions correspond to

choosing in our definition fi(=, ¢, h, C, IT} = H, and function(s) f2(e, ¢, h, C, H, Ac,
Ah,AC,AH) givenby |C/c" 7, |C — ¢, |Ln(C)/(mLn(e))?, etc. More generally,
we may write fi = ¢ and fy = |C/c™|P AHY, etc.

In practice we calculate approximations of the integrals, obtained using the Rie-
mann sum corresponding to a partition g, and we choose some fixed a, &in (0, 1). Let
us refer to these approximations as 57,4 = 1, ..., 16.

Theorem 3 Let Z; be a strictly stationary process which is absolutely regular (us in
Theorem 1). Generically, the statistics s, i = 1,...,17, are asymptotically normal as
N — oo. If Z are 1ID then the means are 0, 1 and (|1]| 15,1, 4 according to wether i is
an element of the set

{1,2,3,4,6,7,9,10,13,14,15},{11,12} or {5,8,16}. (45)

Proof: As before, & (7, zg) are asymptotically normal because they are smooth func-
tions of the building block statistics, which are themselves asymptotically normal. The
means are obtained by replacing the component statistics with their means, and using
E(C3(Z,20,e,N)) = BE((Z, 29,6, N}))".1

The Monte-Carlo experiment

We carried out a Monte Carlo experiment to study some of the properties of the integral
statistics. We included four sets of specific statistics.

The first, numbered 1 to 12, consists of statistics related to the SNT and BDS
statistics. These are statistics &) to &} evaluated in triples using € = 0.25, 0.5, 0.75.

The second, numbered 13 to 28, consists of the integral statistics & to &7, by
pairs, evaluated with p = 1, [a,b] = [0.02,0.98] and ¢ = 1 or 0.5. Thesc are statistics
based on L4 norms of functions of C¥(Z, z,e, N) and ¢ (Z, 20,6, N)™). _

The third, numbered 29 to 36, consists of the integral statistics &7, to &7, by
pairs, evaluated with the same parameters p, ¢, b, g. These are statistics based on L7
norms of functions of AC?(Z,zg,e, N} Add(Z,%o,¢, N)™). These integral statistics
thus aren’t double integrals, as &7, to &7, arc if we consider C¥(Z, z¢,2, N) whichis an
accumulated distribution, as an integral.

Recall that in the case of time series Z the random variable Z consists of m-
histories. Let us write Z(m) for this set. Summarizing, these three sets of statistics are
defined by

jg(n—1)+k (m, Z, N)
Ui2+2(n-1)+k (m,Z,N)

I

&I (Z(m), 4,025k, N), n=1,...,4; k=1,2,3
&1 (Z(m), g, N,1,0.02,0.98,1 — 0.5(k — 1)),
n=2>5,..16; k=1,2.

The order one statistics are centered at the mecan, i.¢., Zo0= p. The integrals are ap-
proximaled by the Riemann sum given in their definition, with a = 0.02,5 = 0.98. A

8
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follows definition (34), with e, = g, k = 0,255.

The fourth set of statistics, numbered 37 to 41 consists of five CDR regressions
on the intervals [0.02, 0.2], [0.2,0.4], [0.4,0.6], [0.6,0.8], [0.8, 0.98]. Recall that in the
series homogenized to the uniform distribution, the CDR and G& P dimension regres-
stons are equivalent.

Let us write J/(m, Z, N),i = 1,...,41 for these statistics, for which a brief
description is given in Tabie 2.

For purposes of comparability, we test the same time series Z and lengths N =
380 and 2000 that Barnctt et. al. (1996) use in their double bind experiment. Thesc were
series obtained from specific logistic, GARCH, NLMA, ARCH and ARMA processes.
The only difference is that we do not extract the linear structure from these series be-
forc applying the tests. Since in practice this procedure is only applied to the ARMA
series, comparability is preserved in the remaining cases and we thus test a series con-
taining only linear dependence. To these five series we add the normal and the uniform
distributions.

The reshuilling test we use is based on the following proposition:

Proposition 4 Letf Xy, X1, ...Xy be IID random variables having an integrable dis-
tribution density. Then

P(#{ka<XD}S‘T‘)=m

Proof: Write P(X, < z) = F(z) = [° dF(z). Then F is bounded and

Pl#{k: Xp < Xo} =35) = /_w ( M ) F(2)*(1 — F(z))M*dF(x)

o 8

= (ﬂf ) _/Oly‘*(l—y)M‘“dy

Let [, = _][; 1°(1 — y)M—dy. Integrating by parts

I _ 1 [34—1(1“ )M—s]l_i_M_S /1 S—H.(l__ )M—a—ld
] - 3"‘1 ?J y 0 S‘l‘]_ 0 y y y
_ {%3—}—1 USSSM""I:'
M+ s= M,

Hence, by induction,
7 - (M—-s)! 1 _ (M — s)!s!
o+ ). MM+l (M4 1)

My 1
(M+1)!  M+1

S0

P(#{ka <X0}=3) =

from which the result follows.l

We thus define the following reshuffling test. For any time series Z (recall this
is a random variable) let Z¥, be a reshuffling of its terms (without replacement). For
any statistical test T, let X = T(2), X = (Z%).
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Corollary § I Z is [ID then it belongs to the same distribution that any of its reshuffled
versions. Therefore the probability that X is amongst the v smallest (similarly largest)

results of M applications of X to Z% is 7. A

Consider the distribution of the results T(Z) as compared to T(Z%2). As long
as the accumulated frequency distributions of T(Z%) and T(ZP) are continuous, there
exists a unique  for which P(T(Z) < z) = P(3(Z%) > z), because the first function
increases (while the second decreases) monotonically from 0 to 1 (1 to 0 respectively).
We define the number 7 = max[z, 1 — z] as the power of the reshuffling test based on
T used to discriminate between time series Z and ZT, when power cquals size.

In the Monte-Carlo experiment we set M = 999, and record the 10 smallest
(and largest) levels for the statistical tcsts ﬁf applied to Z and to Z*. Then we observe
if the r** largest (or smallest) result of T applied to instances of the original series
lies below (or above) the r** smallest (or largest) result of T applied to reshuffles, for
r < 10. For such r, the size and the power of the corresponding reshuffling test are
simultaneously better than or equal to 7= We also measure the 1% confidence level in
standard deviations from the mean, to see how well these confidence levels approximate
those which would be obtained from assuming that the test has a normal distribution,
and calculate the mean, standard deviation, asymmetry and kurtosis of the distribution
¥ (m, Z%, N).

The Monte-Carlo experiment was carried out for e = 2‘%, k = 0,255, as was
mentioned, and form =1, ..., 32.

The results

We thread our analysis of the results about statistics first applying 5y, thus homogeniz-
ing Z to the uniform distribution, Recall that homogenization has the advantage that,
given Z is IID, the distribution of any statistic T(Z) is independent of the distribution
of Z. Homogenization to the uniform distribution seems the most natural in the case
of the statistics we are considering, and has the additional advantages that the building
block random variables are approximately normal [see equations (43), (44)]. Thus one
of our purpose is to argue that, at the very least, §);, does not reduce the power of the
statistics 7, while indeed it may increasc it.

We first analyze the distributions X! (m, Z%, N') when $y is applied. Since for
any Z, ¥ (m, Z%, N) = % (m,{l, N), where 4 is a uniformly distributed time series,
we need only analyze the distribution of 3{ (m, 4, N). Let us write C?(m, Z,e, N) =
Ci(Z(m), u, s, N). Recall that C¥(m, Z%, &, N) = C/(m, U, e, N), since $)y is ap-
plied. Besides recording the results for the statistics 37, we recorded for each Z and N
the values of k corresponding to C?(m, ZB, e, N) = z for z € {0.02, 0.212, 0.404,
0.596, 0.788, 0.98} (the dimension regression interval endpoints). Let us write kmz
for these values. The mean values of &, , over 999 repetitions of {{ at V = 2000 was
an increasing function of m. In the case of order one statistics, the five functions k., .
remained distinct over the range m = 1, ..., 32, although k320,02 ~ 225 (recall that the
uppermost value of the ¢ grid is £ = 255). In the case of order 2 statistics, however,

10
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kmooz = 255 for m. > 15, so thal all of the tested statistics are trivial in this range.
Thus in the case of order 2 we report our results only up to m = 15. Similar ranges
hold for N = 380, although they display more variance. Indeed, it is well-known that
such values of NV are small for the types of stalistics we are dealing, so almost all of our
report will deal with &V = 2000.

The first observation is that the distributions of 37(sn, 4, 2000) are not suffi-
ciently close to the normal distribution to be able to draw inference at the 1% level.
The graph of the 10th smallest and 10th largest values of the statistics 3 (m, 4, 2000)
(measured in standard deviations from the mean) through the relevant dimensions differ
considerably from the graph of the sensitive (constant) 1% and 99% confidence levels
of the normal distribution. Graphs 1 and 2 shows the average of histograms for m rang-
ing from 1 to 32 in the case of order 1 and 2 to 15 in the case of order 2 for the statistics
Ji{m, 4, 2000).

The second observation is that while the uniform and normal distributions are
usually well detected, this is not always the case. For each statistic 3 (m, Z,N) let
7l (m, Z, N} be the number 7 defined above (power when power equals size). We ex-
clude from any further comparison results 3% (m, Z, N') (when Z is one of the nonlinear
series to be tested) for which 7(m, i, N} and 77 (m, 9, N) are not both greater then
0.01. Tables 3.].1 (where j =1 or 2 is the order of the statistic) show those dimensions
for which 4 and 9t were both detected with at least 1% confidence in the case of tests
based on the homogenization to the uniform distribution $jy, with series of 2000 terms,
Tables 3.j.2 to 3.).4 Show how these results differed when (a) 5 was replaced with fy;
{b) no homogenization was applied; and (c) the length of the series was changed to 380.
It can be observed that £ worked well, the main exceptions being, in order 1, the SNT
with € = 0.75, dimensions 5 to 16, and low to intermediate dimensions for integrals 29
to 36. In order 2 the exceptions werc the BDS statistic for ¢ = (.25, dimensions 5 to 15,
an assortment of very low and relatively high dimensions for integrals 33 to 35, and the
dimension regression on [0.020, 0.212] for dimensions 2 to 7. Homogenization to the
normal distribution represented a trade-off in order 1 (the SNT statistics showed better
results), and got almost full marks in order 2. No homogenization got full marks in both
orders. But then 5 also got full marks in both orders at N = 380. What underlies these
results is changes in the ranges of epsilon for which the tests best detect independence,
which happen due to the change of variables in the data, which we believe have to be
understood per se, rather than arriving at blanket conclusions on homogenization..

Previous work (Mayer, 1995; Mayer and Feliz, 1996) has been concerned with
such issues as wether the dimension readings are biased, producing spuriously ‘low
dimensional’ results. Here we shall only be concerned with the power of the tests. We
define an index P of the power of statistics in the following manner. For each statistic
3 (m, Z,2000) let 7 (m, Z, 2000) be the number 7 defined above (power when power
equals size). Then

Plon(Z,9) = Ze (m, Z,2000)),

m=a

where $ is the homogenization process used, i.e., 3y, Hm or the identity transforma-
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tion J9, (which has been omitted from the notation in the right hand side all along for
convenience, and . 1
=7~ if7 < 0.01,

Om) = & if 7> 0.01.
Thus, for example, © is 1 for a high value of power = = 0.001 (the highest possible
in this test), and 0.1 for a minimally acceptabie level of power # = 0.01, and is zcro
for lower levels of power. The power index is the sum of these over the ranges of
dimensions 2 to 8 and 9 to 32 (or 9 to 15), for order 1 (order 2) statistics respectively. We
chose these ranges to scparate out the high dimensional results, becausc of the specific
difficulties that work in high dimensions involve (Ramsey, Sayers and Rothman, 1990).
Thus we shall be concerned with the power indices Py, g, Fig o325 Pl os 2,15 for
the statistical tests § = 1 to 41. We aggregate these power indices in several ways to
compare the performance of the homogenization options, the different integral tests,
and to see which tests were best for each non-linear series.

Tables 4.) show whlch of the homogenization options (fy, Hix, or none) obtained
the maximum index ;—— S P} s for the relevant dimension ranges a to b for
N = 2000. By this measure Order 2 statistics almost strictly dominate order 1 statistics,
and homogenization to the uniform distribution often produces the best results. The
higher dimension and lower dimensional ranges are comparable in their results.

The ARMA and logistic structures were easy to detect. Table 5 show what per-
centage of the statistics in each of the ranges 1 to 12 (SNT and BDS type), 13 t0 28 (L4
norms of C?(m, Z, £, N)), 29 to 36 (L, , norms of AC*(m, Z, e, N)), and 37 to 41 (di-
mensions regressions 1 to 5) detected these structures at the highest levels of P/, ;.
For N = 2000, integral range 13 to 28 with £y always obtained the best scores. The
integral range 29 to 36 with no homogenization obtained some tiecs, as did the BDS
statistic in the case of the logistic. The dimension measures came close to a tie in the
case of the logistic for the high dimensional range of in order 1.

In Table 6, it may be observed that ARCH and NLMA were best detected in the
higher dimensional ranges (for both orders), by integrals 13 to 16 in the order 1 case
and by the first dimension regression (Dim 1) in order 2. Both of these obtained power
levels of 0.001 for several distinct dimensions. GARCH was best detected at the lower
dimensional range, by integrals 27, 13 and 14 in order 1 and 32, 29-30 and 36 in order
2.

Which were the best tests? Since the SNT and BDS statistics are well-known and
have been used extensively, we take them as a bench-mark for purposes of comparison.
This time we use the index

¥ — ]
i 'z',atob(z) - 56{53%}; a0} }::i,atob(z'—"ﬁ)
obtained by maximizing P’u wp Over the normalization options for N = 2000, thus
comparing the best performance of each statistic. We first deal with statistical tests 1 to
12. These represent four functional modifications of the SNT and BDS tests, applied for
three values of ¢. Although these tests are very similar in their performance, in the case
of the order 1 tests &7 is dominant for cach value of £ (getting better than or equal results
to the other tests inciuding the SNT), while in order 2 it is almost always dominant. The

12
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exceptions occur for e = 0.5 or 0.75. In all but one of these @5?; is dominant, while in
the remaining case &7 is. The results of the BDS statistic are always equal or worse to
one of these statistics.

To evaluate the other tests we compared them to the maximum performance
index of tests 1-12. There weren’tt any integral tests which strictly dominated the SNT
and BDS statistics for all of the time series tested. However, there were integrals whose

average performance was better. This average _Qf a0 Was calculated as follows

Y eedl?) = Qo [, Q{,mb(Z)]"l,

i=1,...,41

o

@f,atob = % Z Qé,utob(z)i

Ze{ARCH, ARMA, GARCH,
NLMA, Logistic)

so that performance for cach time series was measured relative to the best performance
obtained in detecting its own type of dependence. By this measure, Table 7 shows the
statistics which scored better than the SNT or BDS statistics:

Tables 8 and 9 show the results for the individual statistics, averaged separately
for the non-linear stochastic time series (ARCH, GARCH, NLMA), which were harder
to detect, and for the linear stochastic and deterministic time series (ARMA and Logis-
tic}, which were easier to detect.

Conclasions

Qur contributions cover two main aspects. The first is using homogenization before
applying U-statistics. In this respect our conclusion is that, although there are trade-offs
and sometimes one option is better than another, on the whole homogenization actually
increases the power of these statistics. Besides, the trade-offs have really to do with
which ranges of epsilon are best to use, rather than with losses due to homogenization
itself. In this respect further study is still needed. However, the door is definitely open
for the consideration of universal confidence intervals. These are especially relevant in
that the distributions characterizing the tests are quite clearly not sufficiently close to
the normal distribution for drawing inference.

The second contribution is using integral statistics so as to use the information
available from a wider range of epsilon.. In this respect, we have found single tests
which perform better than the whole class of SNT ot BDS statistics and values of epsilon
tested (integrals I to 12) over the low or over the high dimension ranges. Nevertheless,
the results are in that there are more functional forms which can be considered and
which may give improved results. Again, this is also a matter of understanding which
ranges of epsilon are most relevant, perhaps to specific processes.
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&1(Z, 20,6, N) = CV(Z,20,6, N) — I(Z, 25,2, N)™ (SNT and BDS statistics)
&2, 20,6, N} = C?(Z, 20,6, N) /' (Z, 20,6, N)" ~ 1
S4(Z, 20,5, N) = In(C?{Z, 29,6, N)) — mIn(c’(Z, 29,6, N})

&Y (Z, Zo,e, N) = In(C*(Z, 25,6, N))/ [mIn(c/(Z, zp,6, N))] — 1
Gi{(Z,20,N,p,a,b,q) = |C(Z, 20,5, N) /I (Z, 20,6, N)™ | Lraga g
SL(Z,29,N,p,a,b,q) = ||C7(Z, 20,6, N) /7 (Z, 20,2, N)™ = i zraap
SY(Z, 20, N, p,a, b, q) = ||CV(Z, 20,6, N) ~ /(Z, 20,6, N)™|| 1o.41apy

(
(

&4(Z,20,N,p,a,b,q) = [In(C(Z, 20,6, N))/ [mIn(cH(Z, 20,6, N))| Lr.o(agy
64(Z, 70, N, p, 0, b, q) = |[In(CY(Z, 20,6, N)}/ [mIn((Z, 20,6, N))] — 1] prsapay

G&1y(Z,20,N,p,0,b,q) = [|In{CHZ, 29,2, N)) — mIn(/(Z,20.£, V)| 1». ]
ll(Z,Zo,N,p, &, b:‘]) - ”CJ(Z!ZUsEvN)”Lp / ”CJ(Z Z0,5, N) ”Lp,q[a,_]_

&12(Z, 20,N, P, 0, b, q) = [[In(CY(Z, 20,6, N))|l1s / lm (7 (Z, 20,8, N)) | oafay

G13(Z, 20, N, p, a,b,q) = [[ACY(Z, 20,6, N) = /01| rpaguy

(

15

&14(2Z, 20N, p,0,b,q) = |I[AC(Z, 20,6, N) — 1]/ 73| prajapy
Z,20,N,p,a,b,q) = |ACHZ,20.6,N) — A(F(Z, Zo,¢, NN prafas

GJ (z zo,N, p, a, b, Q) = ”AOJ(Z Z0,£, N)/A( (Z Z0:%, )m)“Lmq[a,b]

Table 1. Definition of the Statistics of Order ; used in the Monte-Carlo tests

-

7, &1, &4 are functional modifications of the SNT and BDS statistics &7. The other
statistics are integral statistics.
p is the theoretical mean of the distribution A{c(Z, z,e, N)™), and oy = 3|ulV/%,
oz = 3|u(l — p)[Y/2. arc two approximations of its standard deviation. The idea

behind the definition of &%,, &, is that these consist of sums of random variables
approximating the standard normal distribution, one for each element of the £ grid. Each
of ACY(Z, 29,61, N) is approximately normal when Z is TID and homogenization to the
uniform distribution is used, because it is the sum of k™ — (k — 1)™! identical uniform
distributions Io(Z), [see (43), (44)]. However, the sampie for each & is approximately
M~ (k1)1 or

im
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Average Accumulated Frequency over dimensions 1 to 32

Graph 1. Average Histograms of the Statistics
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&{(Z, 20,8, N} = CJ"(Z zo.€, N) — &/(Z, 29,2, N)™ (SNT and BDS statistics)
G3(Z. 20,5, N) = C?(Z, 29,6, N)/(Z, 20,6, N)™ —~

&3(Z, 20,2, N) = n(CI(Z, 29,2, N)) — mIn(c’(Z, zy.¢, N))

G1(Z, 20,6, N) = In(C¥(Z, 2,6, N))/ [mIn(c(Z, 2o e, Nl -1

Gg(zs zD:N: b, a, b: Q) = ”CJ (Zw Zg,£, N)/C?(Zs Zg,£, N)mIILP-Q]’a,b].
G4(Z,20,V,p,0,b,q) = ||C?(Z, 20,6, N) /' (Z, 20,5, N)™ — 1| Lot oz
G7(Z,20,N,p,0,b,q) = |CH(2Z, 20,2, N) — HZ, 0.z, N)™|l Loagay
G3(Z,20,N, p, 0,6, 9) = |[I(C¥(Z, 20,¢, N))/ [mIn(c/(Z, 20,2, N))] [ porafo
G3(Z,20,N,p, a,b,¢) = |In(CH(Z, z0,¢, N))/ [mIn(c/ (Z, 20,2, N))] — L[ y7.a1q,41

&10(Z, 20,,p, 0, b, q) = |[In(CH(Z, 70,6, N)) — mIn(d(Z, zo.¢, NN zo.ate
Gil(za ZO:Nsp! a, b: ) = “Cj(z Zo,E, N)”LP / ”cj(z 2p,&, N)m”LP 9a,b]
6{2(Z1203N:p1 a, b Q) - HIII(CJ(Z Zg,£, N))“LP / ”mhl( (Z Zy.£, N))”LP 2[e,b]
G{S(Z! zO:vav a, b Q) = II[ACJ(Z Zg,£, ) #]/JIIILP 19[a,b]

6{4(2, zﬂsN! b a, b! Q) = ”[ACJ(Z Zg,&, N #]/0-2”1?-1[.3,5]

Gis(za ZQ,N, b, a, b: Q) = ”ACJ(Z-; Zg,&, N) A(CJ(Z: Zo,E, N)m)”LP.w[a,b]
G{G(Zv Z(],N, b, a, b: Q) = ”AO'?(Zs Zp.£, N)/&(C’(Z, Zo,<, N)m)".[,nq[a,b!

Table 1. Definition of the Statistics of Order ;j used in the Monte-Carlo tests

&), &4, &} are functional modifications of the SNT and BDS statistics &7, The other
statistics are integral statistics. u is the theoretical mean of the distribution A( (Z, 26,2, N)™),
and o1 = 3u?, oy = Hu(l — p)|V2 are two approximations of its standard devia-

tion. The 1dea behind the definition of &%,, &1, is that these consist of sums of random
variables approximating the standard normal distribution, one for each element of the
e grid. Each of AC?(Z, zg ek, N) is approximately normal when Z is [ID and homog-
enization to the uniform distribution is used, because it is the sum of k™ — (k — 1)

identical uniform distributions I(Z), [see (43), (44)]. However, the sample for each &

is approximately ET:%)—T—IN .



Tests applied in Monte-Carlo experiment

Test

Integral 1

Integral 2

Integrat 3

Integral 4

Integral 5

Integral 6

Integral 7

Integral 8

Integral 9

Integral 10
Integral 11

Integral 12
Integral 13
Integral 14
Integrai 15
Integral 16
Integral 17
Integral 18
Integral 19
Integral 20
Integral 21

Integral 22
Integral 23
Integral 24
Integral 25
Integral 26
Integral 27
Integral 28
Integral 29
Integral 30
Integral 31

Integral 32
Integral 33

Integral 34
Integral 35
Integral 36

Integral 37 (Dim 1)
Integral 38 (Dim 2)
Integral 39 (Dim 3)
Integral 40 (Dim 4)
Integral 41 {Dim 5)

Brief description of test

C(m, £)— C(1, €)™, € = 0.25 (SNT or DBS)

C(m, £) - C(1, &)™, £ = 0.50 (SNT or DBS)

C(m, £} = C(1,€)",€=10.75 (SNT or DBS)

C(m, e)¥C(1, )", £=0.25

C(m, £)/C(1, £)", £ =0.50

C(m, ey/C(1, &)", € = 0.75

InC(m, €) —m InC(1, g), 8 =0.25

InC(m, g) ~m InC(1, €), € =0.50

InC(m, £) —m InC(1, €), e =0.75

InC{m, €)/(m InC(1,€)) -1, e =025

InC(m, £)/(m InC(1, g)) -1, € =0.50

InC(m, €)/(m InC(l, €)) -1, £ =0.75

ICm, e¥C(1, &) lpe* 9= 1.0

IC(m, e)/C(1, €)"llpqaq=0.5

I[1 — C{m, £)/C(1, £)pq q=1.0

(11 — C(m, e)/C(1, €)"||sqq = 0.5

”C(m’ E) - C(l., f":)m”lﬂi,fl q-= 1.0

IC(m, €) = C(1, &)"lpq g = 0.5

[linC(m, e)(m InC(1, £))pq g = 1.0

|InC(m, &)}/(m InC(1, e}llp.q 9 =0.5

11 - inC(m, e)/(minC(1, Dl q= 1.0

1 = InC(m, £)/(m InC(1, &))lnq q = 0.5

|InC(m, €) — m InC(1, €)llpqq=1.0

[InC(m, €) — m InC(1, €))l,q q= 0.5

”C(m’ S)HP.Q/”C(I’ 8)m”}:!,q q= 1.0

IC(m, &)j],./C(1, S)m”p.q q=0.5

iInC(m, &)jp,¢/lim InC(1, £)|l,,q = 1.0

|ICm)l, /llm InC(1, e}llpqq=0.5

[[(dC(m, &) — p) /o1l|pqq= 1.0

IKAC(m, )~ 1) /G1lng = 0.5

HAC(m, £) — p) /02flq g = 1.0

I(dC(m, &) ~ ) /G2llpg g = 0.5

ldC(m, €} - d(C(1, )" Npaq=1.0

|dC(m, €) — d(C(1, )" Woq 9= 0.5

Il = dC(m, e)/d(C(1, €)"Y|pqq =10

1 = dC(m, e}/d(C(1, £)"Nlpq q = 0.5

Regressionl: C(m, £) € [0.020, 0.212]

Regression2: C(m, €) € [0.212, 0.404]

Regression3: C(m, €) e [0.404, 0.595])

Regressiond: C(m, &) € {0.596, 0.788]

RegressionS: C(m, &) = [0.788, 0.980]
Table 2

% Denotes an L® norm with integration measure (AC(m,g))".



Dimensions for which statistic obtained better than 1% power and size for

Uniform and Normally distributed data (1 versus 0);
Series Uniformized to Uniform distribution, 2000 terms

Order 1

12 13 14 15 16 17 18 1% 20 21 22 23 24 25 26 27 28 29 30 31 32

§ 9 10 1

7

2
3

1

Dimension

Tntegrai |

Integral 2

¢ o 0 0 0 0 0 0 ¢ 0 I

0

Y

1

Integral 3

Integral 4

Integral 5

10 0 0 0 00 0 ¢ 0 00

i

1

Tategral 6

Integral 7
Integral B

1 1

¢ 0o ¢ ¢ 0 0 0 0 0 0 0 0O

1 1 1

1
1

Integral

Integral 10

¢ 0
00 0 0 0 0 O ¢ 0 0 0 0

o
1

1
1

Integral 11

| S |

1

I
1

Integrat 12

Integral 13

Integral 14

1
1
4

1
1

Integral 15
Integral 16

Integral 17

1
1

Integral 18

Integral 19

Integral 20
Integral 21

1
1

1
1
1

Integrat 22
Integral 23

1

integral 24

Intcgral 25

1

1

Integral 26
Integral 27

1
1

o 0 01
¢ 00 0 0 0 0

1

Integral 28

1 1

1

Integral 29
Integral 30
Integral 31

0

]

o 0 0 0
o0 0 0 0 C 0 0 0O

0

1

1

1

0

o ¢ 0 9 0 0
0O o 0 0 0 00 0 0 0 0 0

Integral 32
Intepral 33
Integral 34

1

1

1
1

o 0 0 0 9

¢ 0 0D 0 0 O
¢ g 0 G 0 0 0 0 0 0-0

0

1

Tnfegral 35
Integral 36

Dim ]

6 00 0 0 0 0 0 0 1

0

Dim 2
im 3
Dim4
Dim 3

Table 3.1.1



for which statistic obtained better than 1% power and size for

Uniform and Normally distributed data (1 versus 0);

Homogeneization to Uniform distribut

1mensions

Di

to Normal

ion

t

Homogeneiza

[y

10N mInus

distribution, 2000 terms, Order 1
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for which statistic obtained better than 1% power and size for
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Dimensions for which statistic obtained better than 1% power and size for

Uniform and Normally distributed data (1 versus 0);

Homogeneization to Uniform distribution,
Case of 2000 terms minus case of 380 terms,Order 1
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btained better than 1% power and size
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Dimensions for which statistic obtained better than 1% power and size for
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Uniform and Normally distributed data (1 versus 0)
Homogeneization to Uniform distribution minus Homogeneization to Normal

distribution, 2000 terms, Order 2
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btained better than 1% power and size for
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Uniform and Normally distributed data (1 versus 0);
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Dimensions for which statistic obtained better than 1% power and size for

Uniform and Normally distributed data (1 versus 0);

Homogeneization to Uniform distribution,
Case of 2000 terms minus case of 380 terms,Order 2
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Comparison of Homogeneization methods (amongst Unizgpg, Nor2g00, N02900)

Homaogeneization Method Obtaining Maximum Power Index

Order 1

Zf =14 :atob

| Dimensions [ARCH| P |ARMA| P [GARCH| P |NLMA| P |Logistic] P |
2-8 Ul‘lizooo 0.1 UnizoooT 249 Unizooo 3.7 | Norow 0.5 Uﬂizoog 18.8—|
9-32 Nosgoa| 1.1 ) Unizeoe | 25.8 | Nozo 0.7 | Nozggo | 2.1 [ Uniggoe| 11.5
Table 4.1
Homogeneization Method Obtaining Maximum Power Index Z, 1P ‘ atoh
Order 2
Dimensions |ARCH{ P (ARMA| P [(GARCH! P [NLMA)| P |Logistic) P
2-8 Unizggel 1.6 [Unizong | 36.5 | Unisggo | 12.5 [ Unigege|{ 1.1 [Noogoe | 33.0
9-15 Unizgeyl 1.4 Noagge | 32.6 | Unizoo | 1.8 | Unizpap|{ 1.7 | Nogggo | 29.9
Table 4.2
Unisgoo Homogeneization to the Uniform Distribution, N = 2000.
Norao00 Homogeneization to the Normal Distribution, N = 2000.
Nogoo No homogeneization, N = 2000,
Uniago Homogeneization to the Uniform Distribution, N = 380.

" Unisgo obtained a higher score.
(14 . - . . . - -
Unisgp obtained a higher score, and Uniygeg Is almost identical.



Statistical tests best detecting given non-linear time series

Order and | Average Number ARMA Average Number Logistic
Range of {of Integrals Abov of Integrals Above|
Dimensions High Score High Score
Order 1 Homogeneization Uniaggg Homogeneization Unizgoe
2-8 Integral range 13-28 Integral range 13-28
%> 6.9 81 %> 6.9 81
Order 1 Homogeneization | Unizggg, Nozyy | Homogeneization Unisggo
9-32 Integral range 13.28, 29-36 Integral range 13-28, 37-41
% >23.9 100 % > 20 197, 20
Order2 | Homogeneization | Unizpg, Noasgyy [ Homogeneization | Uniagps, NO 2000, N0 2089
2-8 Integral range 13-28, 29-36 Integral range 13.28, 29-36, 1-12
%>6.9 100 100
Order 2 Homogeneization Unizgpp Homogeneization Uniapps, NO 2000
9-15 Integral range 13-28 Integral range 13-28, 29-36
%>6.9 100 % >6.9 100

Table 5. Integral types best detecting ARMA and Logistic at 2000 terms
(including ties and close calls). Percentage of integrals obtaining high score in
given dimension range. Scores over 80% in bold. 100% also in italics.

Order and | Maximum Scores| ARCH GARCH NLMA
Range of
Dimensions
Order 1 Homogeneization Unisggg Unizgng Noraogo
2-8 Integral 1,4,7,10 | 27,13-14 36
Score 0.2 4.3,4.1 0.7
Order1 | Homogeneization | Nozgpo No2g00 Nozo00
9-32 Integral 13-16 1,4,7,10 13-16
Score 6.5 2.4 8.6
Order 2 | Homogeneization{ Uniyggo Unisggo Unizoo
2-8 . Integral 35,36 [32,29-30,36| 1,4,7,10
Score 23,22 6.2, 6.0,6.0 1.0
Order2 Homogeneization Nozgoo Norszaon Nosoo
9-15 Integral Dim 1 18 Dim 1
Score 6.0 2.7 55

Table 6. Integral types best detecting ARCH, GARCH and
NLMA at 2000 terms (including ties and close calls). Maximum
Score obtained in given dimension range. Best scores in bold.

* This entry represents a score of 23.3



[ Dimensions Order 1 Order 2
| 28 27,13, 14, 26, 36, Dim 2, 15, 16, 25,| 36, Dim 1.
18, 28,20,23,17,19,21, 22, 31, 32,
34, Dim 3.
9-32 or 15 13,15, 14, 16, 18, 28. Dim 1, 18.
Table 7. Tests having weighted power index ,.,{,M better

than all tests 1 to 12, in order of performance.



Order 2 i

Test Order1
Dims 2-8 | Dims 9-32| Dims 2-8 | Dims 9-15
Integrai 1 0.43 0.40 0.00 .13
Integral 2 0.07 0.20 0.64 0.31
Integral 3 0.12 0.35 0.13 0.19
Integral 4 043 0.40 022 0.13
Integral 3 0.07 0.20 0.04 0.31
Integral 6 0.12 0.35 0.13 a.19
Integral 7 0.43 0.40 0.22 0.13
Tntegral 8 0.07 0.20 0.64 0.31
Integral 9 0.12 0.35 0.13 022
Integral 10 .43 0.40 0.33 0.13
Integral 11 0.07 0.20 0.64 0.31
Integral 12 0.12 0.35 0.11 0.18
Integral 13 0.36 0.69 0.19 0.01
integral 14 0.36 0.69 0.25 0.01 “
Integral 15 0.12 0.69 0.30 .01
Integral 16 a12 0.69 .11 0.01
Integral 17 005 0.04 0.13 0.01
Integral 18 0.08 0.32 0.03 0.34
Integral 19 0.05 0.04 0.06 a.01
Tricgral 20 0.07 0.04 003 | 001
Integral 21 0.05 0.04 0.04 0.01
Integral 22 0.05 0.04 0.03 .01
Integral 23 0.06 0.04 - 003 0.01
integral 24 0.04 0.04 0.11 0.01
Integral 25 0.12 0.04 0.15 0.01
Integral 26 0.23 0.04 0.08 0.01
Integral 27 0.37 0.04 .15 0.01
Integrai 28 0.18 0.09 0.26 0.05
Integral 29 0.05 0.04 0.28 0.01
Tntegral 30 0.05 0.04 0.35 .01
Integral 31 0.05 0.04 0.35 0.02
Integrai 32 0.05 0.04 0.36 0.01
Integral 33 0.05 0.04 0.36 0.01
Integral 34 0.05 0.04 0.45 0.01
Tniegral 35 0.01 0.03 0.47 0.03
Integral 36 0.50 0.06 0.69 0.07
Integral 37 (Dim I} 0.06 0.08 0.67 0.96
Integrai 38 (Dim 2) 0.25 0.04 0.13 0.01
Integral 39 (Dim 3) 0.05 0.04 0.11 0.01
Integral 40 (Dim 4) 0.05 .00 0.03 0.00
Integral 41 (Dim 35) 0.03 0.00 0.00 0.00

Table 8. Average power index ;>

scores over 0.5 in bold (N = 2000).

i .
ZelARCIL GARCH, NLMA} Qm tah (Z) ’



Test ‘ Order 1 Order 2
{ Dims 2-8 | Dims 9-32| Dims 2-8 | Dims 9-15
Integral 1 0.22 0.10 0.00 0.94
Integral 2 0.66 0.28 1.00 1.00
Integral 3 0.74 .54 1.00 1.00
integral 4 0.22 0.10 1.00 0.94
Integral 5 0.66 0.28 [ 100 1.00
Integral 6 0.74 0.54 1.00 © 1.00
Integral 7 0.18 0.10 1.00 0.94
Integral 8 0.66 0.28 1.00 1.00
Integral 9 0.74 0.54 1.00 LO0
Integral 10 025 0.17 1.00 0.94
Integral 11 0.66 0.45 1.00 1.00
Integral 12 0.74 0.54 1.00 1.00
Integral 13 0.99 0.74 1.00 1.00
Integral 14 0.83 0.69 1.00 1.00
Integral 15 0.99 0.73 1.00 1.00
Integral 16 0.99 0.64 1.00 1.00
Integral 17 0.99 0.68 LoD 1.00
Integral 18 1.00 0.86 1.00 1.00
Integral 19 0.99 0.60 1.00 1.00
Integral 20 0.99 0.70 1.00 1.00
Integral 21 0.99 0.74 1.00 1.00
Integral 22 0.99 1.00 1.00 1.00
Integral 23 0.99 0.87 1.00 1.00
Integral 24 0.68 0.72 1.00 1.00
Trtegral 25 0.99 0.63 .00 1.00
Tntegral 26 _ 0.99 0.66 1.00 1.00
Integral 27 0.99 0.98 1.00 1.00
Integral 28 0.85 100 1.00 1L.00
Integral 29 0.77 0.76 .00 1.00
integral 30 0.56 0.76 1.00 1.00
Integral 31 0.99 0.56 1.00 1.00
Integral 32 0.99 0.71 1.00 1.00
Integral 33 0.91 0.70 1.00 1.00
Integral 34 0.99 0.76 1.00 1.00
Integral 35 0.30 0.44 1.00 1.00
Integral 36 0.54 0.46 1.00 1.00
Integral 37 (Dim 1) 0.56 0.49 1.00 0,79
Integral 38 (Dim 2) 0.91 0.64 0.29 0.50
Integral 3% (Dim 3) 0.99 0.67 0.81 0.50
Integral 40 (Dim 4) 0.70 0.00 0.57 0.00
Integral 41 (Dim 5) 0.60 0.00 0.00 0.00

Table 9. Average power index ;Y arvinLogsicy Qratos (£
scores over 0.99 (order 1) or 1.00 (order 2) in bold (V= 2000).



