Las colecciones de Documentos de Trabajo del CiDe represen-
tan un medio para difundir los avances de la labor de investi-
gacién, y para permitir que los autores reciban comentarios
antes de su publicacién definitive. Se agradecard que los co-
mentarios se hagan llegar directamente al (los) autor{es).
 D.R. © 1987, Centro de Investigacién y Docencia Econg-
micas, A. C., carretera México-Toluca 3655 (km. 186.5),
Lomas de Santa Fe, 01210 México, D. F., tel. 727-9800,
fax: 292-1304 y 570-4277. % Produccion a cargo dal (los}
autor(es), por o que tanto ef contenido como el estilo y la
redaccion son responsabilidad exclusiva suya.

*E-mail: dfilipov@dis1.cide.mx. Tel. 727 98 Q0 Ext. 2708,
Fax 727 98 78 {México, D.F.)

NOMERO 136

Dragan Filipovich*

A SOLUTION TO THE PARTNERSHIP PROBLEM UNDER
SYMMETRIC TECHNOLOGIES AND DISUTILITIES



Abstract

This paper characterizes the second best solution to the “partnership problem” with
budget balancing under the assumption of perfect substitutability of cfiorts and
restrictions on the disutility of efforts. In this latter regard, I assume that all partncrs
have the same disutility index, and that it displays increasing a solute curvature
(“risk aversion™). It tums out that, under these conditions, every pariner will be
called to provide the same level of c{fort in the second best allocation.



1 Introduction

'This paper offers a solution to a special case of the ‘partnership problem’.
The issue, which goes back to Groves (1973) and Holstrom (1982), is to
identify the optimal way of sharing output among partpers when their effort
levels are not directly observable (and, hence, the sharing rule cannot depend
on effort). The problem is to nentralize incentives to free ride. Holmstrom
(1982) emphasized that, in general, it will not be possible to achieve the
first best allocation under budget bhalancing, i.e., sharing rules that exhaust
the product (a result anticipated in the more general treatment of Groves
(1982)).

This resnlt is actually rather intuitive: The first best level of effort re-
quires the marginal increment in output to equal the marginal disntility of
effort. This for every partner. Incentive compatibility requires that the mar-
ginal share of output equals the marginal disutility of effort. Again, for every
partuer. But then the only way to make first best efforts incentive compatible
is to assign the full marginal increment in output to an individual partner.
By budget balance this cannot be done for each and every partner, and the
result follows,

Later, Legros and Matthews (1993) characterized the restrictions on Lhe
production and utility functions that allow the first best level of effort to be
supported under budget balance. Taking my cue from them, 1 characterize
here the second best profile of effort levels that obtains with budget balancing
uuder the assumption of perfect substitutability of efforts and restrictions on
the disutility of efforts. I assume that all partner have the same disutility
index and that it displays increasing absolute curvature (‘risk aversion’). It
turns out that, under these conditions, every partner will be called to provide
the same level of effort in the second best allocation. This provides a useful
benchmark case to evaluate the advantages of alternative arrangements aimed
al achieving efficiency. For example, the ‘residual claimant’ solution pointed
out by Holmstrom (1982) (i.e., the introduction of a partner who claims
product but does not contribute eflort) which itself is a second best solution
(as the claimant cannot participate in production).



2 The Problem

Assume there are n > 1 agents denoted by subscripts ¢ = 1....,n. Agent i
chooses his or her effort level e; from [0, +00). This choice is nol observable
by the other agents. Once every agent has chosen an effort level, a certain
publicly observable output y results accovding to the production function
f(e): R? — R, withf(0) =0,f(.) > 0.f" (.} < or > 0. I will specialize and
let f{.) take the form f {3}, e;), Le., agents eflorts are taken to bec perfect
substitutes for each other. FEach agent has a utility function of the form
Ui (si,e;) = s; — v(e;), where v(0) = 0,7 (.) > 0 and v"{.) > 0. Following
the standard convention, I let e_; = (e ..., - 1,¢€i41, ..., €a). Further, let a
sharing rule be a collection of functions s; : R, — i, ¢ = 1,...,n. A
sharing function s; gives the share of the collective output allocated by the
partnership to its ith member. The partnership problem is then:

MAXLa ()} LoD, f (Z:‘—_:t Ci) - Z?:] v (61‘)

st ) Yris(y=y,Vye Ry, withs()>20Vi=1,..,n
ii) & € argmaxy, s (f (e + Tipy &) —v(e) , Vi=1,.,n

Remarks 1) Note that, given the assumed shape of the partners’ utility
functions, an allocation is Pareto optimal if and only if it maximizes the
objective in the partnership problem. Also note that everyone has the same
v (.) here.

2) Constraint ¢) requires that sharing rules be budget balancing, ie.,
that the sum of the payoffs to the partner fully exhaust the product for
any possible realization of output. Moreover, the payofls to the partners are
required to be nonnegative. In other words, punishments are not allowed.

3) Constraint ii) is an incentive compatibility condition. It requires the
partners’ prescribed actions to be best responses to the actions of all other
partners. This condition captures the non-observability of partners’ efforts
(together with the requirement that payoffs be conditioned only on output
and not on individual efforts). There is an issue of multiplicity of equilibria
here, which I will - following the literature- simply ignore.



3 Characterizing Solutions to the Partner-
ship Problem

The solution to the partnorship problem, as I have just formulated 1t, in-
volves choosing a series of functions. The restrictions constraint #4) imposcs
on these functions are not immediately clcar. One could take a ‘first order’
approach (laking the sharing functions to be differentiable), and substitute
for constraint #i) the first order conditions characterizing agents’ best re-
sponses. For the procedure to be justified, one would have to make sure that
first order conditions are sufficient. This again imposcs restrictions on the
shape of the sharing functions (this time around, involving second deriva-
tives), and does not really simplify things. Rather than tackling the problem
directly in the form just sketched, I take here an indirect approach, following
T.egros and Matthews(1993): Legros and Matthews characterize the class of
partunership problems that allow the first best level of efforts to be supported
under budget balance. They do this by specifying conditions directly on Lhe
production and utility functions, thus obviating the need to deal with sharing
functions explicitly. Following their approach, I proceed to characterize the
set of all feasible effort profiles in a way that does not explicitly involve shar-
ing functions. The idea being to identify the (constrained) optimal cfforts
profile and only then proceed to derive a sharing rule that would support
it. I'inding the optimal efforts profile is clearly a much more straightforward
problem, involving as it does only the choice of n numbers rather than n
numbers plus n functions. When one considers that in general there will
be many sharing rules supporting a specific effort profile as & solution to
the partnership problem, the advantages of this approach become even more
evident.

Let E; be the set of all effort levels that agent i can choose among!, and
let Y;(e) denote the set of outputs that can be attained by partner ¢ Ly
unilateral deviation from the eflort profile e,

Yi() ={y e R,| f(e;,e_;}) =y, some ¢ € E;}

The set of outputs that do not reveal the identity of a non-deviator after
a unilateral deviation from e is then

Y (8) = NY; (2)

11 will switch here to more general notation to emphasize the generality of the argument.
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Tt suflices to concentrate on least-cost deviations,
c: (y.€) =inf {v; (&) |f (e 8-) =y, e, € By, y € Vi (8)}

If output were shared equally, the most partner ¢ could gain by unilateral
deviation from € to cutput ¥y wonld be

g =ly/n-clya-lE/n-u@) foryeY(e
With this notation, I can statc the following claim:

Proposition 1 There cxists a budget bulancing sharing rule sustaining the
effort profile € as a Nash equilibrium in the partnership problem iff

> 9(y.E)<0VyeY ()
=1

Proof. The prool of the if part is by construction: Given an effort profile
satisfying the condition, I construct a sharing rule that supports it as a Nash
equilibrium,

Assume € satislies the condition. Tet for all partners ¢ but one, say the
jth,

S: (f (E)) = U (E,)
For the jih partuoer let
s; (£ (@) =£(e) — ) _vi (£ (¢))
i)

Now, for all y € Y (€) and all partners but the jth, let their payoffs be

given by
$i (£(8) — i (y) = w (&) — i (v,€)
For the jth, let
si(y=y-—>Y &)

i
For y ¢ Y (€), for some partner k such that y ¢ Y; (€), let

y=sx(y)

For everyone else,
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I claim these rules are budget balanciug, feasible under the technology
and sustain € as a Nash equilibrium. Budget balance is immediate for all
output levels, Ieasibility for y ¢ Y (€) is obvious. For y € Y (&), feasibility
is cvident from the condition of the proposition, which just states that for
yEY(®),

f(E) —y 2D [vi(@) — e (y,8)]
=1

Finally, to show that these rules sustain € as a Nash cquilibrium: For
y € Y (€), note that, for all agents but the kth, these arc just ‘trigger’
strategies, while the kth agent cannot attain y by unilateral decviation. [For
y € Y (&), the payoffs are constructed in such a way that all agents ¢ # j are
just indifferent between deviating and not. All what has to be shown is that

s; (£(€)) — 8, (¥) = v; (€) — ¢ (y,€)

This follows [rom the condition of the proposition and the construction
of the payoffs.

The only if part follows from the following argument: Assume that for
some y € Y (€) the condition is not satisfied, i.e.,

£(@) —y < }:[ (&) -« (9,2)]
But then, by budget balance,
g[ (@) - 2 W)] < z[ (@) - (v, 7))

This implies that for at least one partner 7,

s; (£(8) — 35 (¥) < v; (&) — ¢; (y,E)

and that partner will have an incentive to deviate.
- .

This result allows one to rewrite the partnership problem in the following
fashion,

maX.co f{e) — 3, v (e:)
where ® ={e€ E|Y." ,9:i(y,e) <0 Yy eY(e)}
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Let me now cast the special casc of the partnership problem I am con-
cerned with here in terms of the formalism just developed. For Lhis purpose
I have to refine my notation a little: Let y(e) = f(e) = (3 e) and

s(e) =0 e, Hence, f(s(e)) =y (e) and {1 (y(e)) = s (e).
In this special case, onc obtains
Y@ ={ycR|y=>f(s(®~&), e €[0,00)}
Also, one has

Y@ =My eRily2f(s(2) -&), e cf,o)}

= {y € Ry|y > { (s () — min (€y,...,&))}

This follows since if €; > €, then Y; (€) C Y, (€). Finally, one gets
C; {f (3 (E—il € (3 (P—h t] [ ( ) €; ])
Using these, the partnership problem can be written

maxeecpy f (50 &) — Lin, v (&)

$.by— 20 1U(f “y) - [Z_T,-‘;lej—ez-])—f(ZZ;lei)JrEl‘:xv(ei)SO

YV y2f(TZh,e;— min{ey,...,e,))
Vi=1,..,n
Assumption 1: Let (3.0, e;)— Y1, v (&) as a function from R} —
R be concave. Assume further v' (e} — 0 ase — 0, v/ (e) — 00 as e —

oo, while f (0) > 0 and ' (8) = k < 00 as s — oo.

Remark Having rewritten the problem in this way, it would seem that, even
under Assumption 1, the set of feasible effort levels will not necessarily



be convex®, and hence this program will nol necessarily be concave .
Nerther is it immediately obvious to me what kind of conditions one
would want to impose to make this program concave.

Nevertheless, 1t would still seem possible to say quite a bit about its
sohition, but not before making an additional assumption on the funclion v,

Assumption 2 : —v displays increasin g absolute risk averston.

Proposition 2 Under Assumptions | and 2, at the (constrained) optimum
of the partnership problem, vvery agent will inpul the same level of effort,
le,e;=e>0Vi=1,..,n

Proof. The disutility cost of producing any given output level y

(i.e., 3%, v(e;) ) is minimized at f—%@. This follows from the convexity of
v and the assumption of perfect substitutability of efforts. The only real
question is here whether, given a feasible effort profile e with Y0, e; = m,
and such that not all its components are equal, the effort profile that has every
agent inputting T is feasible as well. Starting at the constrained optimum
level of output y*, the binding incentive compatibility conditions concern
only deviations downwards?, so it suffices to show that these conditions will

m

continue to be satisfied in going from the original profile to the T profile.
TLet y = f(s) < y* = f (), hence s < m. For simplicity, I concentrate on the
two agent case, though, as far as I can see, the argument generalizes without

problems. Incentive compatibility requires

f(m)—yzf:v(e,-)—i;v(s—e,-)

=1

?Basically because — Y v (.}is concave. One sufficient condition is to take v to be
linear. 1 do not find this interesting since in such a case individual effort levels will rcinain
indetcrminate.

3For a deviation upwards to be incentive compatible, it must be that

y~f(m) > f:v(s~ &) - iv(cs)
i=1

=1

This means that the surplus is greater at y than at the original level of production, while
it is possible to deter deviations downward Irom y. If it is not possible to deter deviations
upward from ¥, then there is an even better outcome such that deviations downward from
it can be deterred. But then the original output level could not have been optimatl to start
with.



Now, in going from the original (nnequal) profile to the homogenous onc,
the right hand side remains unchanged. Due to the convexity of v, the first
sumn on the left [alls, but so does the second. To establish the desived result
it suffices to show that the fall in the first term exceeds that of the second,

m

so that the lefl hand side overall falls. Define e} = s —¢; and a = |e; — T .
Assume ey < c3. Note that

It follows that

( from the convexity of v, increasing absolute risk aversion, and from the fact
that m > ef +¢ and T = ¢ + @ = ey + ¢ ; see diagram below). W

H €
J i
o !
o a !
| ! ‘
] ' i 1 !—"
0 ey 3 €2 S m

Figure 1.1: Inequality due to Risk Assumption
A simple corollary of this is:

Corollary 3 Given that, al the optimum, everybody inputs the same level
of effort, it is without loss of generality to calculate the optimal effort level
using an average product sharing rule, i.e., s;(y) =%, fori=1,...,n.
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After this detour, one comes back to the following very simple forin of
the partnership problem,

max; f (né) — nv (&)

sit. €€ argmax, 22—y (e)

Remark That f(ne)— nv(e) 23 concave follows from Assumption 1 above.

With the problem written in this form, the ‘first order’ approach becomes
a practical option. Note that, under Assumption 1 above, each partner, given
the cffort levels of the other partners, faces a concave program, and, hence,
first order conditions suffice to characterize the partners’ best responses. So,
this problem can be rewritten yet again as

max, f(ne)—nve)

st @) — 4 (e)

Remark I wrile equality in the condition, rather than inequality, for, at a
solution, e will be chasen so that this expression holds with equality.
( If f—'%) < v'(e) then f' {e) < n1/ (€), and this cannot be the best
response, since increasing e Is always feasible. Further, at an optimuin,
e > 0, sincev' (0) = 0 while £ (0) > 0). This means that the solution
is unique and fully determined by the condition.

4 Concluding Remarks

As I said in the introduction, this result provides a benchmark to judge
the desirability of alternative arrangements aimed at enhancing efficiency.
Without knowing what the second -best solution to the partnership problem
13, it is hard to say whether wasting the productive potential of one partner
(the ‘residual claimant’) is justified. The same issue arises in other contexts:
For example, it would be hard to tell whether inter-firm competition helps to
enhance production if one is not in a position to tell how much would have
been produced in the absence of such force. Of course, this is only a first
step in the task of characterizing the solutions for this problem under more
general technologies.
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