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Abstract. 

This paper extends Andrews'(] 993) median-unbiased estimation for auto- regressive/unit 
root time series to panel data dynamic fixed effects models. It is shown that median­
unbiased estimation applies !:itraightforwardly to mo<lels that include linear time trends as 
weJJ as to those including more general time specific effects. Using Monte Carlo 
simulations, median-unbiased LSDV estimators arc computed and found to be robust to 
groupwise hetcroskedastic and cross-sectionally correlated disturbances. These estimators 
are then used to evaluate conditional co11vergencc, in the sense of economics having 
parallel balanced growth paths, in the cases of 48 USA states, 13 OECD's and two wider 
samples from Summers and Ileston's Penn World Tables, with 57 and 100 countries 
respectively. Unadjusted I.SDV estimates, would support conditional convergence in all 
samples. Median-Unbiased estimates, however, support conditional convergence only 
among USA states and OECO countries. 

Key words: Dynamic panel data models, median-unbiased estimators, unit roots, Monte 
Carlo simulations, conditional convergence. 
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Resume,i 

F.ste trabajo cxtiende el metodo de estimaci6n mediana-insesgada de Andrews (1993) a 
rnodelos dinamicos de panel en dectos fijos. Se muestra que la estimacion mediada­
insesgada sc aplica directamente a modelos de panel que incluyen tendencias lemporales 
lineales o efectos especificos al tiempo. Utilizando simuJaciones de Monte Carlo, sc 
encuentra quc los estimadores mediana-inscsgados son bastante robustos a problemas de 
heterocedasticidad grupal y correlaci6n de corte transversal. Finalmente estos estimadorcs 
son utiliza<lus para evaluar convergcncia condicional del ingreso per capita en los casos de 
48 estados de USA, 13 paises de la OCDF y dos mucstras de pafses de las Penn World 
Tables de Summers y Heston con 57 paises y 100 paises respectivamente. Estimadores no 
con-egidos son consistentes con convergencia condicional en todos los casos. Sin embargo 
cstimadores median.a insesgados apoyan convergencia condicional solamcnte en los casos 
de los estados de USA y los paises de la OCDE. 



1. Introduction 

T
he bias problem in dynamic panel data models in finite sampJes has been well 
docwnented. Nickell (1981 ). Sevestre and Trognon (1985), Hsiao (1986) have 
shown that the magnitude of the asymptotic hias of the LSDV for a small time 
dimension (7) is appreciable. Beggs and Nerlove (J 988) show that the bias 

becomes larger if the cross-sectional dimension of the panel (N) is also small. The use 
of LSDV estimators in typical panels (small T and large N) is, therefore, not 
recommended. Instead, estimators with consistency properties relying on the cross­
sectional dimension of the panel being large have been proposed. This is the case of 
TV [Anderson and Hsiao ( 1981, 1982), Hsiao (1986)] or GMM [Arellano and Bond 
(1981) J methods, among others. 

The increasing interest of researchers for applying panel data techniques to 
problems involving cross-country information is creating new problems since those 
samples generally have larger time dimensions but much shorter cross-sectional 
dimensions than typical panels and, more important, they may be highly trended as 
well. ln several cases reliable methods can not he implemented because of T being 
large relative to N. That is the case of GMM methods, i.e. Arellano and Bond (I 981 ), 
Are1lano and Bover (I 995), Ahn and Schmidt (1995). This is also the case of 2SLS 
methods as in Keane and Runkle (1992). More seriously, in contexts where the AR 
parameter is high, say 0.95, most estimators may become either biased and/or 
imprecise. Under these circumstances, most bias formulae given in the papers 
previously referred, may not be accurate either. 

This paper extends Andrews' (1993) median-unbiased estimation for auto­
regressive/unit root time series to dynamic fixed effects models. Median-unbiased 
estimation seems to be a reliable method to dea1 with the bias and efficiency problems 
in the aforementioned context. This approach is sample specific and is based on the 
distribution of the LSDV estimator, which is well behaved and has a relatively small 
variance even in the unit root case. 'lbe justification for using median-unbiased 
estimation in dynamic panel data models is similar to the one for Kiviet's (1995) 
LSDVc estimator. The method exploits the fact that even though the LSDV is 
inconsistent and biased in finite samples it is however relatively efficient. Kiviet 
( 1995) derives a formula to estimate the bias of the LSDV estimator for finite N and 
1~ and shows that it performs well in a number of experimental designs. Cermeno 
{1997) finds that in contexts with no exogenous regressors, Kivict's approximation 
formula to the bias works quite well for an AR parameter value such as 0.5. However, 
for higher values, say 0.85, 0.95 or 0.99, the formula produces quite biased and 
imprecise results, the reason being that implementation of Kiviet's method requires 
preliminary estimates of the AR parameter, and most if not all estimators are either 
biased or highly imprecise in such a context. 
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In contrast, median-unbiased estimation can he implemented for a range of AR 
parameter values on tl1c inkrval [-1, I]. Thus, highly persistent AR processes do not 
poses any problem for the method. ln addition, the method can be applied to samples 
of any finite dimension. Obviously, the limitation of the method is that it only applies 
to dynamic panel data models with no exogenous regressors. 

The rest of the paper is organized as follows. Section 2 extends Andrews' ( 1993) 
median unbiased estimation to a panel data context. Section 3 explores the robustness 
of median-unbiased estimators to heteroskcdastic and cross-sectionally correlated 
disturhances. Section 4 presents an empirical application of Lhe method to the 
controversial issue of conditional convergence. Finally, Section 5 concludes. 

2, Median-unbia..ted estimation in dy11amic panel data 

This section extends Andrews' (1993) median-unbiased estimation of first order 
autoregressive/unit root (AR/UR) Lime series models to panel data. Specifically, the 
paper considers a l wo way dynamic error-components model or dynamic panel data 
model with no exogenous regressors as described in the panel data literature, e.g. 
Hsiao ( 1 986), or Ballagi ( 1995). 

Extension of Andrews' approach from lime series to a dynamic panel of N 
cross-sections over T + 1 periods is straightforward. lt will suffice to show that the 
LSDV estimator (which is the OLS analogue in panel data) is invariant to the 
individual specific effects, time specific effects (or time trend coefficients) and the 
variance of the innovations. Following Andrews' definition of models, consider the 
latent variable model 

• py· Y,, = ii-I + V;,, i=1, ... ,N, t=l, ... ,1·, (l) 

where v1,--iid(O,cr 2
), .v,~0 -·(0,o- 2 /(1-/1 2

)) if p'E(-1,1),and Yto is some constant or 

random variable if /J = I .1 Thus, for each cross-section, the process given by ( l) is 
strictly stationary with mean zero in the fonner case, and a random walk with 
arbitrary initial condition in the later case. Define now the following model for Y;,, 
the observable variable: 

i = 1, ... ,N, t = l, ... ,T (2) 

where /l; and ,1,
1 

are individual and time specific effects respecti vdy, which are 

1 The normulily ussump(ion is not made since lmhufs (I %1) algorithm is not used in lhi~ paper. IMtead, Monte 
Carlo .~imulation~ will be u:;~. 

2 
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assumed fixed. from (1) and (2) it can be ohtained: 

(3) 

where P,; = Jl;(l- P) and X, = ;1,, - /JA.,_1 . In the case /J E (-1,1), for each cross­

section (Y;, - ).., ) will he a strictly stationary process with mean /1; . ln this case, 

(.Y;o - A.0)--(jt; ,a1 /(1 - /J 2 )) . For the case fJ = l, (Y;, - A1) is a random walk process 
with arbitrary initial condition. Performing the Within transformation [Wallace and 
Hussain (1969)] on model (3) gives: 

(4) 

where J\, = (Y;, - Y;. - Y, 1- y ) , Y;r-1 .::;; (Yit-l - .Y;_,-i - Y.1-i + y ,-i), and 

~' = (v;, - vi. - v.1 + v). Por each transformed variable, the second, third and fourth 
terms are the indivi<lual (over time for each cross-section), cross-sectional (over 
cross-sections at a given time), and overall ( over both cross-sections and time) means 
of the corresponding original variables. The OLS estimator applied to the 
transformation (4) is known as the Within or LSOV estimator (LSDVl in this paper). 
This is given by 

:,; ·r N r 

/3,snvi =(LL J';,.V;,-1) /(L L CP-11-1 )
2

) • (5) 
i~I 1=1 i~I 1~1 

Since the Within transformation sweeps out both individual and time specific effects, 
/J,.\Dvi is independent of these effects, and so is its distribution. By continuous 
substitution, as in Hsiao (1986 ), p. 73, it can he obtained from (3): 

1 /3 1 1-1 

( ' ) - pl L p'- j v. -/1.. = JI.+ Y·o + V • 
• II I 1 /J I I I/ 

- j-1 

Using 'J1,; = A (l - /J), Y;o = µ, + lit + bv;0 , with 
expression ( 6) can be rewritten as 

1··1 

Yu=µ, +..l, + /3 1bv10 + LfJ'-iv,1 . 
i=l 

(6) 

(7) 

Thus, given the Within transformation, formula (5) only involves weighted sums of 
iid errors. Hence, scaling up the variance of these errors will affect proportionally the 

numerator and denominator in (5), leaving P, . .,,w1 invariant with respect to cr 2
. 

ln the unit-root case, given an arbitrary initial condition, Y;o, equation (3) 
becomes 

3 
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( 

Y;, =y;o +A,+ Ivlj. 
i-1 

(8) 

In this case, /31,sDvi will be independent of Y;o and ;i.,, since these are simply 

swept out by the Within transformation. Also in this case, P,.sm I will be unaffected 

by the level of a- 2 hy a similar argument to the one given for the stationary case. 

Consider now the particular case in which the Lime specific effects take the 
form of a simple linear time trend, that is 11.

1 
=Br. In this case, model (3) becomes 

(9) 

where µ1 = A (1- /J) + 0/J , and 0 = 0(1 - /J) . In the case /J e (-1,1) , for each cross­

scclion, y
11 

is a strictly stationary process around a linear time trend with inten.:ept µ, 
and slope 0 . The initial condition for each cross-section will be 
Y;o·-(A,a2 /(1- /31)). For p =I, Y;, is a random walk process with drift B for each 
cross-section and with arbitrary initial condilion. Subtracting individual means from 
(9) gives lhe Within transformation 

(10). 

where t = T(T + 1)/2. The OLS estimator of p in (10) is called LSDV2 here. IL can 
be shown that all previous independence or invariance results also apply in this case. 

A few remarks are in order here. First, since the Within transformation wipes 
out individual and time specific effects the previous results hold if these effects were 
random, as long as they are independent from each other cUJ.d from Yrn and v;,. 

Second, the invariance results also hold in the cases in which the time specific effects 
take the form of higher order lime trends (i.e. quadratic), or if individual time eHects 
or time trends are allowed for. Finally, the previous results apply in the case of one­
way error-components models that exclude time specific effects. In this case 

Y;, = µ, + y; , and all previous invariance results arc obvious. Only models given by 
(3) and (9) will be considered. 

Median-unbiased estimation is implemented as follows. (i) For a given sample 
size, a mapping between different AR parameter values and the corresponding median 
of the distribution of the LSDV estimator needs to be obtained. (ii) The previous 
mapping is then used to correct actual LSDV estimates. The median-unbiased 
estimate is the value of the AR parameter for which the median of the distribution of 
the LSDV is the actual LSDV estimate. This implies subtracting a median-bias from 
the actual LSDV estimate. 

4 
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Fractiles of the LSDVl and LSDV2 for a few relevant AR parameter values 
and sample sizes arc shown in Tahle A. I. They have heen tabulated using Monte 
Carlo simulations with 2000 I replications. 11,e sample sizes chosen correspond to 
those of the actual panels of per capita income that will be used in the empirical 
application later in Section 6. Monte Carlo simulations have been chosen instead or 
I mohf' s (1961) algorithm for practical reasons. The computational work has been 
made using GAUSS programs. Figure 1 in the Appendix presents the median-bias of 
the LSDV estimator. 

The previous results show, numerically, the existence of a monotonically 
increasing relationship between true AR parameter values and the median (and other 
fractilcs as well) of the distribution of the T ,SDV estimators. Also, they show that the 
downward biases are sizable. In particular, for a given sample size, the bias becomes 
larger as the true AR coefficient approaches one. In the same way, the median (and 
mean) hiases become larger and the 90% confidence intervals become wider the 
sho1icr is the time dimension of the samples. For the sample dimensions considered, 
using LSDV estimators is likely to produce downward hiased point estimates of the 
AR parameter. Moreover, those estimates may be consistent with stationary processes 
when in fact they arc non-stationary. 

3. Rohu.-.tness of median-11nbiated estimator:; 

This section explores the robustness of median-unbiased estimators to groupwise 
heteroskedasticity and cross-sectional correlation problems. This exercise seems to he 
necessary because these problems are likely to be present in practice. Table l 
describes the relevant design. The variance levels of the error term for each cross 
section were obtained from the covariance matrix (diagonal elements) of actual 
samples of output per capita in logarithms, aller removing time and individual effects. 
Notice that the highest ratio of maximum to minimum variances is considerably large 
(124 times approximately) and co1Tesponds lo the more heterogcnl;':ous 100-country 
sample. The values for the minimum and maximum off-diagonal elements of the 
correlation matrix of disturbances were obtained in the same way, but they were 
truncated to values between •0.1 to +0.1 approximately. The average absolute value 
of these elements is between 0.05 to 0.06. 

5 
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TABLF. I: 

Dc'iign of Heteroskeda!ilicity and Cro!;S Sectional Correlation 

SAMPLE RATIO MAX/MIN MAX/MIN 

DIMENSIONS VARIANCE CORRELATION 

(N = 48, T+ l = 63) 37.83 - 0.11 ! + 0.11 

(N ~ 13, T~ 1 = 120) 9.02 -0.10/-1 0.10 

(N ~ 57, T+l =41) 106.31 - 0.11 / + 0.11 

(N ·- I 00, T-1 I "' 31) 123.77 - 0.11 / + 0. Jl 

In general, the results show that the median-unbiased estimators are quite 
robust to the simultaneous presence of groupwise heteroskeuaticity and cross­
sectional correlation problems. Table A.2 in the Appendix, .shows the relevant 
fractiles. In all cases, the median fractiles are practically unaffected. The 90% 
intervals, lhough, are widened moderately. In particular, they become wider the 
shorter the time dimension of the samples. It should be noticed that Andrews (1993) 
median-unbiased estimators in single time series are also found to be quile robust to 
non-iid and non-normal error structures. 

4. An empirical application to conditional convergence 

The empirical work on convergence is controversial. The cross-section regression 
approach (as in Baumol (1986), Barro(l991), Darro and Sala-i-Martin (1992), 
Mankiw, Romer and Weil (1992), among others) has been criticized on several 
aspects such as the wasting of useful information across time by averaging growth 
rates and its underlying a<;sumption of homogeneity across countries. More seriously. 
the uniform finding that economies converge at the rate of about 2 percent per year 
almost everywhere can he shown as evidence that this statistical apparatus is Hawed 
!Quah (1993a, 1993b)I. Also, Evans (1996, 1997) shows formally that the cross­
section regression approach in fact produces biased results. 

Several alternative approaches have heen proposed since then. Evans ( 1994, 
I 996, 1997, 1998) and Evans and Karras (1996a, 1996b) have proposed several 
methods that exploit the cross-sectional and/or time series dimensions of the data to 
test endogenous against exogenous growth and to estimate growth regressions 
consistently. In general, they find evidence supporting exogenous growth theories in 

6 
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samples such as the l JSA stales, 13 OECD countries and a 48-country sample from 
the Penn World Tables. They find conditional convergence, in the sense of economies 
having parallel balanced growth paths. Absolute convergence does not hold even in 
the case of the USA states. 

On the other hand, studies of wider and more heterogeneous samples of 
economies have produced mixed results. Lee, Pe.saran and Smith ( 1995) using a unit 
root approach cannot reject the hypothesis of nun-stationary output processes in 3 
samples of countries. This result is in spite of their high time series estimates of 
convergence rates (about 20% per year), which they attribute to highly upward biases 
in their point estimates. In contrast, Islam (1995) using the same 98-country sample as 
in Mankiw, Romer and Weil (1992) finds much faster conditional converge rates if a 
dynamic panel data model is used instead or a cross-section or pooled regression 
model. Particularly, he uses the Minimum Distance (MD) and Least Squares Dummy 
Variable (LSDV) estimators obtaining similar results. Yet Islam's results using the 
LSDV estimator, might still be significantly biased in favor of high convergcnct: rates 
since he uses data spaced five years apart, which results in a very short time 
dimension of the sample (only 5 poinls in time). Lee, Pcsaran and Smith (1998) and 
Maddala and Wu (1997) have pointed out that imposing the restriction that economies 
have identical auto regressive and time trend parameters, as in the case of Islam, can 
produce very misleading results on convergence. 

This section uses median-unbiased estimators in panel data to evaluate 
conditional convergence in the sense of economies having parallel balanced growth 
paths. It is found here, that even when the assumption of equal auto regressive 
coefficients and common trends is imposed a priori, convergence in the sense given 
previously is likely to happen only in samples of relatively homogeneous countries 
once the biast:s are corrected. Four panels of yearly per capita income arc studied. 
They include 48 USA states for the period 1929-1991, l3 OECU countries during 
1870-1989, 57 countries over the period 1950-1990 and 100 countries, including the 
previous 57 countries, during 1960-1990. The last two samples are taken from 
Summers and Heston's Penn World Tab1es (PWT), version 5.6. Additional 
information on these samples is provided in the Appendix. 

Models (3) and (9) given before are used. These models are useful to 
characterize whether deviations or per capita output of economies around a common 
trend are stationary or not. In the first case, the dynamics of output per capita of 
economics will be consistent wilh conditional convergence. Even though conditional 
convergence can be taken as evidence in favor uf exogenous growth models, it should 
he pointed out a simi1ar output dynamics would be consistent with a technological 
imitation mechanism as in endogenous growth models. Interestingly, an endogenous 
growth model that explicitly takes into account the interdependence among 
economies wil1 also prcdicl conditional convergence, i.e. see Howitt and Aghion 
( 1998). Thus, the distinction among exogenous and endogenous growth models could 

7 
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not be made on the basis of convergence results only. 

The results are shown in Table 2. The estimates of the AR coefficient in these 
models are labeled LSDVl and LSDV2 rcspeclively. Uncorrected estimates are 
obtained using the actual data samples. The corresponding median-unbiased estimates 
have been obtained by correcting the actual LSOV for the median-bias, as explained 
in section 3. They are computed using the fractiles under groupwise 
heteroskedasticity and cross-sectional correlation since these problems are presumed 
to be present in the actual data. Also, median-unbiased estimates of the AR 
coefficient from fractiles under iid errors are reported for comparison. The implied 
rates or t:onvergence are reported in both cases. They are approximately ClJual to one 
minus the AR parameter value. The raks reported in parenthesis in the last column 
arc obtained using the 0.05th and 0.95th fractilcs and can be interpreted as the lower 
and upper values of the AR coefficient whose 90% probability interval~ would be 
consistent with the actual LSDV estimates. Tn most cases they have been computed by 
linear interpolation. It can be seen that th1;: uncorrected LSDVI and LSDV2 estimates 
are consistent with conditional convergence in all samples. However, after the 
median-bias corr~ction, conditional convergence holds only in the cases of the USA 
slates and OF.CD countries, and takes place al much slower rates than the ones 
implied by the uncorrected estimates. In the case of the PWT samples of countries, 
the median-unbiased estimates do not support conditional convergence. 

8 
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TABLE 2: 

UncorrccLcd and Median-Unbiased Estimates of AR Coefficients 

Sample (N, T +I)/ UNCORRECTED MEDIAN-UNBIASED 

F.stimator 

EstimateN Implied Rote of Estimates Implied Rate of 
Convergence Convergence 

US States (48,63) 

LSDY I 0.9109 9.3 0.9511 5.0 (2.6-7.5) 

0.9505 5.1 (3.3-6.8) 

I.SDV2 0.8811 12.7 0.9188 8.5 (5.9-11.3) 

0.9177 8.9 (7.3-9.4) 

OECD (13,120) 

LSDV I 0.9576 4.3 0.9792 2.1 (0.0 - 4.2) 

0.9788 2.1 (l.0 - 3.0) 

LSDV2 0.9686 3.2 0.9938 0.6 (0.0 - 2.4) 

0.9938 0.6 (0.1 - 1.0) 

PWT-1 (57,41) 

LSDV I 0.9569 4.4 1.0000 0.0 

1.0000 0.0 

LSDV2 0.9555 4.6 1.0000 0.0 

1.0000 0.0 

PWT-2 (I00,31) 

LSDY I 0.9537 4.7 1.0000 0.0 

1.0000 0.0 

LSDV2 0.9533 4.8 1.0000 0.0 

1.0000 0.0 

*ln the last two columns and for each estimator, the values m the first row are computed usmg frn<.:t1lcs 
under groupwise hctcroskedasticity and cross-sectional correlation. The values in the second row 
correspond to fractiles under iid errors. 

9 
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5. Co11clusion 

This paper has implemented median-unbiased estimation in dynamic panel data 
models. First, it has been shown that Andrews' (1993) approach applies 
straihtforwardly to LSDV estimators in dynamic fixed e11ect.s models with no 
exogenous regressors. Second, median-unbiased LSDV estimators have been found to 
be quile robust to groupwise heteroskedastic and cross-sectional correlated 
innovations. Relative to alternative estimation or bias-correction techniques, the 
method has the advantage that it can be applied to panels of any finite cross-sectional 
and time dimensions and with highly persistent dynamics as would be the case of 
most cross-country panels. 

The empirical application has found that m1adjusted LSDV estimators would 
be consistent with conditional convergence in the four samples studied. Median­
unbiased estimates, however, support conditional convergence, only for the USA 
states and OECD samples, and at much slower rates than unadjusted LSDV estimates 
would imply. 

10 
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APPENDIX 

Data Sources 

The USA states sample includes real per capita personal income of 48 contiguous states over 
the period 1929-1991 . The dala source is The U.S. Department of Commerce. See Evans and 
Kc1rras ( 1996a) for details. 

The OECD sample includes per capita real gross domestic product during the period 1870-
1989 for Australia, Austria, Belgiwu, Canada, Denmark, Finland, France, Italy, Noiway, 
Sweden, United Kingdom, United States and West Germany. The Data source is Angus 
Maddison ( 1991 ). See Evans ( 1996, 1998) for details. 

The other two samples include per capita gross domestic product in constant international 
prices (RGDPCH) from the Penn World Tables 5.6 by Summers and Heston (1991, 1993). 
Countries with complete information over the periods 1950-1990 and 1960-1990, except oil 
and centrally planned countries were selected. The PWT-1 sample includes 5 7 countries. 
They are Egypt, Kenya, Maurilius, Morocco, Nigeria, South Africa, Uganda, Canada, Costa 
Rica, Dominican Republic, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, 
Trinidad and Tobago, The United States, Argentina, Bolivia, Brazil, Chile, Colombia, 
Ecuador, Guyana, Paraguay, Peru, Uruguay, Venezuela, India, Japan, Pakistan, Philippines, 
Sri-Lank, Thailand, Austria, Belgium, Cyprus, Denmark, Finland, France, West Germany, 
Greece, Iceland, Ireland, Italy, Luxembourg, Ncthcrlamls, Norway, Portugal, Spain, Sweden, 
Switzerland, Turkey, United Kingdom, Australia, New Zealand. 

The PWT-2 sample has 100 countries including (in addition to the previous 57 
countries): Algeria, Benin, Burkina Faso, Burundi, Cameroon, Cape Verde, Central, Chad, 
Comoros, Congo, Gabon, Gambia, Ghana, Guinea, Guinea Bissau, Ivory Coast, Lesotho, 
Madagascar, Malawi, Mali, Maurilania, Mozambique, Namibia, Rwanda, Senegal, 
Seychelles, Togo, Tunisia, Zambia, Zimbabwe, Jamaica, Bangladesh, Hong Kong, Indonesia, 
Israel, Jordan, Korea, Malaysia, Singapore, Syria, Taiwan, Fiji, Papua New. 

11 
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Table A.I: 

F.-actiles ofLSDV Estimators nfthe AR Coefficient in Panel Data 

Smpl. size N = 48 ; T + 1 = 63 N = 13; T+l = 120 

AR/ Fract 0.05 0.5 0.95 0.05 0.5 0.95 

LSDVI 

0.89 0.8371 0.8553 0.8718 0.8481 0.8723 0.8932 

0.91 0.8566 0.8739 0.8895 0.8688 0.8918 0.9113 

0.93 0.8759 0.8925 0.9071 0.8897 0.9109 0.9287 

0.95 0.8952 0.9104 0.9240 0.9107 0.9302 0.9463 

0.97 0.9131 0.9277 0.9404 0.9311 0.9490 0.9629 

0.99 0.9301 0.9437 0.9556 0.9501 0.9660 0.9782 

0.999 0.9376 0.9505 0.9617 0.9583 0.9732 0.9844 

LSDV2 

0.89 0.8365 0.8546 0.8711 0.8481 0.8710 0.8915 

0.91 0.8562 0.8732 0.8888 0.8681 0.8905 0.9094 

0.93 0.8753 0.8919 0.9063 0.8892 0.9099 0.9273 

0.95 0.8945 0.9097 0.9233 0.9098 0.9291 0.9448 

0.97 0.9124 0.9271 0.9397 0.9297 0.9474 0.9614 

0.99 0.9296 0.9431 0.9550 0.9490 0.9647 0.9771 

1.00 0.9374 0.9505 0.9617 0.9579 0.9727 0.9837 

12 
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Table A.I (Continued) 

Smpl. size N = 57 ; T + 1 = 41 N= 100; T+1 =31 

AR/Fract 0.05 0.5 0.95 0.05 0.5 0.95 

LSDVl 

0.89 0.8110 0.8333 0.8535 0.7916 0.8121 0.8314 

0.91 0.8296 0.8515 0.8708 0.8089 0.8293 0.8478 

0.93 0.8476 0.8687 0.8877 0.8263 0.8460 0.8643 

0.95 0.8657 0.8857 0.9036 0.8435 0.8621 0.8794 

0.97 0.8827 0.9019 0.9188 0.8592 0.8777 0.8944 

0.99 0.8988 0.9173 0.9334 0.8751 0.8926 0.9086 

0.999 0.9058 0.9237 0.9395 0.8817 0.8990 0.9146 

LSDV2 

0.89 0.8101 0.8326 0.8529 0.7912 0.8117 0.8307 

0.91 0.8285 0.8504 0.8700 0.8083 0.8285 0.8472 

0.93 0.8469 0.8679 0.8864 0.8259 0.8454 0.8633 

0.95 0.8649 0.8848 0.9028 0.8426 0.8617 0.8790 

0.97 0.8820 0.9011 0.9183 0.8588 0.8771 0.8938 

0.99 0.8981 0.9165 0.9326 0.8744 0.8920 0.9080 

1.00 0.9059 0.9238 0.9395 0.8818 0.8991 0.9147 
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Table A.2: 

Fractiles ufthc LSDV Estimator!l llnder Groupwise Hctcro~kedasticity & Cross Sectionul Corn:lation 

Smpl. Size N = 48; T+l = 63 N = 13 ; T+ 1 =- 120 

AR /Fract 0.05 U.5 0.95 0.05 0.5 0.95 

LSDVl 

0.89 0.8305 0.8549 0.8788 0.8447 0.8718 0.8959 

0.91 0.8488 0.8733 0.8953 0.8674 0.8922 0.9145 

0.93 0.8691 0.8915 0.9128 0.8866 0.9107 0.9293 

0.95 0.8885 0.9098 0.9292 0.9086 0.9300 0.9484 

0.97 0.9071 0.9267 0.9451 0.9301 0.9486 0.9640 

0.99 0.9252 0.9426 0.9594 0.9484 0.9659 0.9796 

0.999 0.9327 0.9502 0.9663 0.9557 0.9729 0.9853 

LSDV2 

0.89 0.8300 0.8543 0.8777 0.8439 0.8707 0.8947 

0.91 0.8479 0.8727 0.8945 0.8665 0.8908 0.9126 

0.93 0.8681 0.8909 0.9123 0.8863 0.9097 0.9281 

0.95 0.8883 0.9092 0.9286 0.9081 0.9288 0.9468 

0.97 0.9068 0.9260 0.9446 0.9291 0.9474 0.9628 

0.99 0.9247 0.9421 0.9591 0.9476 0.9649 0.9785 

1.00 0.9327 0.9499 0.9657 0.9563 0.9726 0.9852 
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Tahle A.2: (Continued) 

Srnpl. Size N = 57 ; T +1 = 41 N = 100 ; T + l = 31 

AR/ Fract 0.05 0.5 0.95 0.05 0.5 0.95 

LSOVl 

0.89 0.7979 0.8322 0.8643 0.7762 0.8099 0.8464 

0.91 0.8160 0.8491 0.8818 0.7932 0.8286 0.8627 

0.93 0.8356 0.8678 0.8987 0.8127 0.8442 0.8787 

0.95 0.8538 0.8836 0.9144 0.8282 0.8596 0.8940 

0.97 0.8704 0.8997 0.9281 0.8454 0.8759 0.9063 

0.99 0.8879 0.9151 0.9418 0.8619 0.8896 0.9196 

0.999 0.8963 0.9225 0.9476 0.8689 0.8976 0.9263 

l,SDV2 

0.89 0.7973 0.8313 0.8635 0.7759 0.8095 0.8458 

0.91 0.8154 0.8486 0.8811 0.7930 0.8280 0.8622 

0.93 0.8353 0.8671 0.8978 0.8121 0.8437 0.8780 

0.95 0.8531 0.8827 0.9138 0.8280 0.8592 0.8935 

0.97 0.8698 0.8993 0.9276 0.8451 0.8755 0.9059 

0.99 0.8869 0.9143 0.9411 0.8614 0.8891 0.9191 

1.00 0.8949 0.9222 0.9476 0.8677 0.8968 0.9269 
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