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Abstract.

This paper extcnds Andrews’(1993) median-unbiased estimation for aulo- regressive/unit
root time series to panel data dynamic fixed effects models. It is shown that median-
unbiased estimation applies straightforwardly to models that include lincar time trends as
well as to those including morc general time specific ctfects. Using Monte Carlo
simulations, median-unbiased LSDV estimators arc computed and found to be robust to
groupwise hetcroskedastic and cross-sectionally correlated disturbances. These estimators
are then used to evaluate conditional convergence, in the sense of economics having
parallel balanced growth paths, in the cases of 48 USA states, 13 OECD’s and two wider
samples from Summers and Ileston’s Penn World Tables, with 57 and 100 countries
respectively. Unadjusted [.SDV cstimates, would support conditional convergence in all
samples. Median-Unbiased estimates. however, support conditional convergence only
among USA states and OECD countrics.

Key words: Dynamic panel data models, median-unbiased estimators, unit roots, Monte
Carlo simulations, conditional convergence.

JEL classification: C23, C15, 040

Resumen

Este trabajo cxtiende el método de estimacion mediana-insesgada de Andrews (1993) a
modelos dindmicos de pancl en efectos fijos. Se muestra que la estimacion mediada-
insesgada sc aplica directamente a modelos de panel que incluyen tendencias temporales
lineales o efectos especificos al tiempo. Utilizando simulaciones de Monte Carlo, sc
encuentra quc los estimadores mediana-inscsgados son bastante robustos a problemas de
heterocedasticidad grupal y correlacion de corte transversal. Finalmente estos estimadorcs
son utilizados para evaluar convergencia condicional del ingreso per capita en los casos de
48 estados de USA, 13 paises de la OCDE y dos mucstras de paises de las Penn World
Tables de Summers y Heston con 57 paises y 100 paises respectivamente. Estimadores no
corregidos son consistentes con convergencia condicional en todos los casos. Sin cmbargo
cstimadores mediana insesgados apoyan convergencia condicional solamente ¢n los casos
de los estados de USA y los paises de la OCDE.



1. Introduction

he bias problem in dynamic panel data models in [inite samples has been well
Tdocumented. Nickell (1981), Sevestre and Trognon (1985), Hsiao (1986) have

shown that the magnitude of the asymptotic bias of the LSDV for a small time

dimension (7) is appreciable. Beggs and Nerlove (1988) show that the bias
becomes larger if the cross-sectional dimension of the pancl (V) is also small. The use
of LSDV estimators in typical panels (small 7 and large N) is, therefore, not
recommended. Instead, estimators with consistency propcrties relying on the cross-
scctional dimension of the panel being large have been proposed. This is the case of
IV [Anderson and IHsiao (1981, 1982), IIsiao (1986)] or GMM [Arellano and Bond
(1981)] methods, among others.

The increasing intcrest of researchers for applying panel data tcchniques to
problems involving cross-country information is creating new problems since those
samples generally have larger time dimensions but much shorter cross-sectional
dimensions than typical panels and, morc important, they may bc highly trended as
well. In several cases reliable mcthods can not be implemented because of 7" being
large relative to N. That is the case of GMM mcthods, i.e. Arellano and Bond (1981),
Arellano and Bover (1995), Ahn and Schmidt (1995). This is also the case of 2SLS
methods as in Keanc and Runkle (1992). Morc seriously, in contexts where the AR
paramcter is high, say 0.95, most estimators may become either biased and/or
imprecise. Under thcse circumstances, most bias formulae given in the papers
previously referred, may not be accurate either.

This paper extends Andrews’ (1993) median-unbiascd estimation for auto-
regressive/unit root time series to dynamic fixed effects models. Mcdian-unbiased
estimation seems to be a reliablc method to deal with the bias and efficiency problems
in the aforementioned context. This approach is sample specific and is based on the
distribution of the LSDV estimator, which is well behaved and has a relatively small
variance even in the unit root case. The justification for using median-unbiased
cstimation in dynamic panel data models is similar to the one for Kivict’s (1995)
LSDVc estimator. The method exploits the fact that even though the LSDV is
inconsistent and biased in finite samples it is however relatively efficient. Kiviet
(1995) derives a formula to estimate the bias of the LSDV estimator for finite N and
7, and shows that it performs well in a number of cxperimental designs. Ccrmefio
(1997) finds that in contexts with no exogenous regressors, Kiviet’s approximation
formula to the bias works quite well for an AR paramcter value such as 0.5. However,
for higher values, say 0.85, 0.95 or 0.99, the formula produces quite biased and
imprecise rcsults, the reason being that implementation of Kiviet’s method requires
preliminary estimates of thc AR parameter, and most il not all estimators are either
biased or highly imprecise in such a context.
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In contrast, median-unbiased cstimation can be implcmented for a range off AR
paramelter values on the interval [-1,1]. Thus, highly persistent AR processes do not
poses any problem for the method. In addition, the method can be applied to samplcs
of any finite dimension. Obviously, the limitation of the method is that it only applies
(o dynamic panel data models with no exogenous regressors.

The rest of the papcr is organized as follows. Section 2 extends Andrews’ (1993)
median unbiased estimation to a pancl data context. Section 3 explores the robustness
of median-unbiased estimators to heteroskcdastic and cross-sectionally correlated
disturbances. Scction 4 presents an cmpirical application ol the method to the
controversial 1ssue of conditional convergence. Finally, Section 5 concludcs.

2. Median-unbiased estimation in dynamic panel data

This section cxtends Andrews' (1993) median-unbiased estimation of first order
autoregressive/unit root (AR/UR) lime series models to panel data. Specifically, the
paper considers a (wo way dynamic error-components model or dynamic panel data
model with no exogenous rcgressors as described in the panel data literature, c.g.
[Isiao (1986), or Ballagi (1995).

Extension ol Andrews’ approach from time series to a dynamic panel of N
cross-sections over 7+ 1 periods is straightforward. 1t will suffice to show that the
LSDV estimator (which is the OIS analogue in panel data) is invariant to the
individual specific effects, time specific effects (or time trend coefficients) and the
variance of the innovations. Following Andrcws’ definition of models, consider the
latent variable model

Y, =i v, i=1....N,t=1,...,1T, (1)

where v, ~iid(0,0”), v~ (0,0 /(1= #*)) if B e (-L1),and y;, is some constant ot
random variablc if £ =1." Thus, for each cross-section, the process given by (1) is
strictly stationary with mean zero in the former case, and a random walk with
arbitrary initial condition in the latcr case. Define now the following model for y, ,
the observablc variable:

Yi =/_['.+].I+y; irl,...,N,fz‘l,..-,T (2)

i

where g,and A, are individual and time specific effects respectively, which are

!"The nonmulity assumption is not made since Iimhol*s (1961) algorithm is not used in this paper. Instead, Monte
Carlo simulations will be used.
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assumed [ixed. I'rom (1) and (2) it can be obtaincd:

Vi =ﬂi+j"r+ﬁyil-] +vy 3)
where 7, = u,(1-8) and 4, =4 -4, . In the case f e(-11), for each cross-
section (y, —A4,)will be a strictly stationary proccss with mean ;. In this case.
(Vo —Ap)~(at;,0" (1= ). For the case B =1, ( y, —4,) is a random walk process

with arbitrary initial condition. Performing the Within transformation [Wallacc and
Hussain (1969)] on model (3) gives:

V.= ﬁyn—l + Vs 4)

where yil = (yi« - y; -y, t y._) > yil—l = (yil—] _yi..-] - y.t—l + .V..,—l ) s and
¥, =(v, —v, =7, +v ). For each transformed variable, thc second, third and fourth

lerms are the individual (over time for each cross-section), cross-sectional (over
cross-scctions at a given time), and overall (over both cross-sections and time) means
of the corresponding original variablcs. The OLS estimator applied to the
transformation (4) is known as the Within or LSDV estimator (LSDV1 in this paper).
This is gtven by

N 7

” N T
B = (Zzyil.vﬂ—l)/(ZZ(yﬂ—l.)2) - (5)

=1 1=l i=! =1

Since the Within transformation sweeps out both individual and time specilic effects,
B is independent of these effects, and so is its distribution. By continuous
substitution, as in Hsiao (1986), p.73, it can be obtaincd from (3):

(Vi =A) = -# B+ By +2:B,mivii : (6)
1-p J-)

Using &, =p,(1=f), yo=p+4 +bvy, with b=( -pH™, and 2, =0,
expression (6) can be rewritten as

/-1 )
Vi =4, + "1'1 + ﬂ'bv,o + Zﬂl_',vg' . N
=

Thus, given the Within transformation, formula (5) only involves weighted sums of
iid crrors. Ilence, scaling up the variance of these crrors will affect proportionally the

numerator and denominator in (5), leaving f,,,,,, invariant with respect to o*.

Tn the unit-root case, given an arbitrary initial condition, y,,, equation (3)
beecomes
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Vi =Vie t A DV, (8)
il

In this casc, B, will be independent of y,, and A, since these are simply
swept out by the Within transtormation. Also in this case, B, , Wwill bc unaffected
by the level of o by a similar argument to the onc given for the stationary case.

Consider now the particular case in which the time specific effccts take the
form of a simple linear time trend, that is 4, = & . In this case, model (3) becomes

Vi =ﬂf+g‘+/‘t"n--1 +v,, 9)

where I, = u,(1- B)+ 64, and § =6(1- ). In the casc f & (-1,1), for each cross-
scelion, y, is a strictly stationary process around a linear time trend with intercept g,
and slope €. 'The initial condition {for each cross-section will be
Yo, (1= 7). For g=1, y, is arandom walk process with drift 8 for cach
cross-section and with arbitrary initial condition. Subtracting individual means from
(9) gives the Within transformation

V= 3.) =5(I—f)+ﬁ(y” -y +(v, —v,), (10).

where ¢ =T (T +1)/2. The OLS estimator of # in (10) is called LSDV2 herc. It can
be shown that all previous independence or invariance results also apply in this case.

A few remarks are in order here. First, since the Within transformation wipes
out individual and time specific effects the previous results hold if these effects were
random, as long as they are independent from each other and from y, and v, .
Second, the invariance results also hold in the cases in which the time specific effects
take the form of higher order time trends (i.e. quadratic), or if individual time eftects
or time trends are allowed for. Finally, the previous results apply in the case of one-
way error-components models that exclude time specific effects. In this case

v, = 4, +y,, and all previous invariance results arc obvious. Only models given by
(3) and (9) will be considered.

Median-unbiased estimation is implemented as follows. (i) For a given samplc
size, a mapping between different AR parameter values and the corresponding median
of the distribution of the LSDV cstimator needs to be obtained. (ii) The previous
mapping is then uscd to correct actual LSDV estimates. The median-unbiased
estimate is the value of the AR parameter for which the median of the distribution of
the LSDV is the actual LSDV estimate. This implics subtracting a median-bias (rom
the actual LSDV estimate.
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Fractiles of the I.SDV1 and LSDV?2 for a few relevant AR parameter values
and sample sizes arc shown in Table A.1. They have been tabulated using Montc
Carlo simulations with 20001 rcplications. The sample sizes chosen corrcspond to
thosc of the actual pancls of per capita income that will be used in the empirical
application later in Section 6. Moute Carlo simulations havc been chosen instcad ol
Imohf’s (1961) algorithm for practical reasons. 'T'hc computational work has been
made using GAUSS programs. Figure 1 in the Appendix prescnts the median-bias of
the LSDV estimator.

The previous results show, numerically, the existence of a monotonically
increasing relationship between true AR parameter values and the median (and other
fractilcs as well) of the distribution of the 1.SDV cstimators. Also, they show that the
downward biases are sizable. In particular, for a given samplc size, the bias becomcs
larger as the true AR coefficient approaches onc. In the same way, thc median (and
mean) biases become larger and thc 90% confidence intervals become wider the
shorter is the time dimension of the samples. For the sample dimensions considered,
using LSDV estimators is likely to produce downward biased point estimates of the
AR paramcter. Moreover, thosc cstimates may be consistent with stationary processes
when in fact they arc non-stationary.

3. Robustness of median-unbiased estimators

This section explores the robustncss of median-unbiased estimators to groupwise
heteroskedasticity and cross-sectional correlation problems. This exercise seems to be
necessary bccause these problems are likely to be present in practice. Table 1
describes the relevant design. The variancc levels of the error term for each cross
section were obtained from the covariance matrix (diagonal elements) of actual
samples of output per capita in logarithms, afler removing time and individual effects.
Notice that the highest ratio of maximum to minimum variances is considcrably large
(124 times approximately) and corresponds Lo the more heterogeneous 100-country
samplc. The values for the minimum and maximum off-diagonal elemcnts of the
correlation matrix ol disturbances werc oblained in the samc way, but they werc
truncatcd to values between -0.1 to +0.1 approximately. The average absolute value
of these elements is between 0.05 to 0.06.
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TABLFE 1:

Dcsign of Heteroskedaslicity and Cross Sectional Correlation

SAMPLE RATIO MAX/MIN MAX/MIN
DIMENSIONS VARIANCE CORRELATION
(N =48, I+1 =63) 37.83 -0.11/+0.11
(N=13,T11=120) 9.02 -0.10/4 0.10
(N-=57,T+1=41) 106.31 -0.11/40.11
(N - 100, T4 1 =31) 123.77 -0.11/+0.11

In general, the results show that the median-unbiased estimators are quite
robust to the simultanecous presence of pgroupwise heteroskedaticity and cross-
sectional correlation problems. Table A.2 in thc Appendix, shows the relevant
[ractiles. In all cases, the median fractiles are practically unatfected. The 90%
intervals, though, are widcned moderately. In particular, they become wider the
shorter the time dimension of the samples. It should be noticed that Andrews (1993)
median-unbiased estimators in single time series are also found to be quite robust to
non-iid and non-normal error structurcs.

4. An empirical application to conditional convergence

The empirical work on convergence is controversial. ‘The cross-section regression
approach (as in Baumol (1986), Barro(1991), Barro and Sala-i-Martin (1992),
Mankiw, Romer and Weil (1992), among others) has been criticized on several
aspects such as thc wasting of useful information across time by averaging growth
rates and its underlying assumption of homogeneity across countries. More seriously,
the uniform finding that economies converge at the rate of about 2 percent per year
almost evcrywhere can be shown as evidence that this statistical apparatus is {lawed
[Quah (1993a, 1993b)|. Also, LEvans (1996, 1997) shows formally that the cross-
section rcgression approach in fact produces hiased results.

Scveral alternative approaches have been proposed since then. Evans (1994,
1996, 1997, 1998) and Evans and Karras (1996a, 1996b) have proposed several
methods that cxploit the cross-sectional and/or time series dimensions of the data (o
test cndogenous against cxogenous growth and (o estimate growth regressions
consistently. In general, they find evidence supporting exogenous growth theorics in
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samples such as the 1JSA states, 13 OECD countries and a 48-country sample from
the Penn World Tables. They find conditional convergence, in the sense of economies
having parallel balanced growth paths. Absolute convergence does not hold even in
the case of the USA statcs.

On the other hand, studies of wider and more heterogeneous samples of
economies have produced mixed results. Lee, Pesaran and Smith (1995) using a unit
root approach cannot rcject the hypothesis of non-stationary output processes in 3
samples of countrics. This result is in spite of their high time series estimatcs of
convergence rates (about 20% per year), which they attribute to highly upward biases
in their point estimatcs. In contrast, Istam (1995) using the samc 98-country samplc as
in Mankiw, Romer and Weil (1992) finds much faster conditional converge rates if a
dynamic panel data model is used instead ol a cross-section or pooled regression
model. Particularly, he uses the Minimum Distance (MD) and Least Squarcs Dummy
Variable (LSDV) estimalors obtaining similar results. Yet Islam’s results using the
LSDV estimator, might still be significantly biased in favor of high convergence rates
since he uses data spaced five years apart, which results in a very short time
dimension of the sample (only 5 points in time). Lee, Pcsaran and Smith (1998) and
Maddala and Wu (1997) have pointed out that imposing the restriction thal economies
have identical auto regressive and time trend parameters, as in the case of Islam, can
produce very misleading results on convergence.

This section uses median-unbiascd estimators in pancl data to evaluate
conditional convergence in thce sense of economies having parallel balanced growth
paths. It is found hcre, that even when the assumption of equal auto regressive
coefficicnts and common trends is imposed a priori, convergence in the sensc given
previously is likely to happen only in samples of relatively homogeneous countries
once the biases are corrected. Four panels of yearly per capita income arc studied.
They include 48 USA states for the period 1929-1991, 13 OECD countries during
1870-1989, 57 countries over the period 1950-1990 and 100 countries, including the
previous 57 countries, during 1960-1990. The last two samplcs are taken from
Summers and Heston’s Penn World Tables (PWT), version 5.6. Additional
information on these samples is provided in the Appendix.

Models (3) and (9) given beforc are used. These models are useful to
charactcrize whether deviations ol per capita output of economies around a common
irend are stationary or not. In the first case, the dynamics of oulput per capita of
economics will be consistent with conditional convergence. Even though conditional
convergence can be taken as evidence in favor of exogenous growth models, it should
be pointed out a similar output dynamics would be consistent with a technological
imitation mechanism as in endogenous growth models. Interestingly, an endogenous
growth modcl that explicitly takes into account thc interdependence among
cconomies will also predict conditional convergence, i.e. see Howitt and Aghion
(1998). Thus, the distinction among cxogenous and endogenous growth models could
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not be made on the basis of convergence results only.

The results are shown in Table 2. The estimates of the AR coefficient in these
modecls are labeled LSDV1 and LSDV?2 respectively. Uncorrected estimates are
obtained using the actual data samples. The corresponding median-unbiased estimates
have been oblained by correcting the actual LSDV for the median-bias, as cxplained
in section 3. They are computed using the fractiles under groupwise
heteroskedasticity and cross-sectional correlation since these problems are presumed
to be present in thce actual data. Also, mcdian-unbiased estimates of the AR
coefficient from [ractiles under iid crrors are reported for comparison. The implied
rates of convergence are rcported in both cases. They are approximatcly equal to one
minus the AR parameter value. The rates reported in parcnthesis in the last column
arc oblained using the (0.05th and 0.95th fractiles and can be interpreted as the lower
and upper values of the AR coefficicnt whose 90% probability intervals would be
consistent with the actual LSDV estimates. Tn most cases they have been computed by
linear interpolation. It can be seen that the uncorrected LSDV1 und LSDV?2 estimatcs
are consistent with conditional convergence in all samples. Howcvcer, after the
median-bias correction, conditional convergence holds only in the cases of the USA
states and OECD countries, and takes placc at much slower rates than the ones
implicd by the uncorrected estimates. In the case of thc PWT samples of countries,
the median-unbiased cstimates do not support conditional convergence.
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TABLE 2:

Uncorrected and Median-Unbiased Estimates of AR Coefficients

Sample (N, T+1)/ UNCORRECTED MEDIAN-UNBIASED
Estimator
Estimates Implied Rate of Estimates Implied Ratc of
Convergence Convergence
US States (48,63)
LSDV 1 0.9109 93 0.9511 5.0 (2.6-7.5)
0.9505 5.1 (3.3-6.8)
1.SDV 2 0.8811 12.7 0.9188 B.5 (59-11.3)
0.9177 8.9 (7.3-94)
OECD (13,120)
LSDV | 0.9576 43 0.9792 2.1 (0.0-42)
0.9788 2.1 (1.0-3.0)
LSDV 2 0.9686 32 0.9938 0.6 (0.0-24)
0.9938 0.6 (0.1-1.0)

PWT 1 (5741)

LSDV I 0.9569 44 1.0000 0.0
1.0000 0.0
LSDV 2 0.9555 4.6 1.0000 0.0
1.0000 0.0

PWT — 2 (100,31)

LSDV 1 0.9537 4.7 1.0000 0.0
1.0000 0.0
LSDV 2 0.9533 48 1.0000 0.0
1.0000 0.0

*In the last two columns and for each estimator, the valucs in the first row are computed using fractiles
under groupwise hetcroskedasticity and cross-sectional correlation. The values in the second row
correspond to fractiles under iid errors.
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5. Conclusion

This paper has implemented mcdian-unbiased estimation in dynamic panel data
models. First, it has been shown that Andrews’ (1993) approach applies
straihtforwardly to LSDV estimators in dynamic fixcd ellects models with no
exogenous regressors. Sccond, median-unbiased LSDV estimators have been found to
be quite robust to groupwise heteroskedastic and cross-sectional correlated
innovations. Relative to alternalive estimation or bias-correction techniques, the
method has the advantage that it can be applied to pancls of any {inite cross-sectional
and time dimensions and with highly persistent dynamics as would be the casc of
most cross-country panels.

‘Thc empirical application has found that unadjusted LSDV e¢stimators would
be consistent with conditional convergence in the four samples studied. Median-
unbiased cstimates, however, support conditional convergence, only for the USA
states and OECD samples, and at much slowcr rates than unadjusted LSDV estimates
would imply.



Rodolfo Cermenio/Evuluating Convergence with Median-Unbiused Estimators

APPENDIX

Data Sources

The USA states sample includes real per capita personal income of 48 contiguous states over
the period 1929-1991. The data source is The U.S. Department of Commerce. See Evans and
Karras (1996a) for details.

The OLCD sample includes per capita real gross domestic product during the period 1870-
1989 for Australia, Austria, Belgium, Canada, Denmark, Finland, France, Italy, Norway,
Sweden, United Kingdom, United States and West Germany. The Data source is Angus
Maddison (1991). See Evans (1996, 1998) for details.

The other two samples include per capita gross domestic product in constant international
prices (RGDPCH) from the Penn World Tables 5.6 by Summers and Heston (1991, 1993).
Countries with complete information over the periods 1950-1990 and 1960-1990, except oil
and centrally planned countries were selected. The PW'T-1 sample includes 57 countries.
They are Egypt, Kenya, Mauritius, Morocco, Nigeria, South Africa, Uganda, Canada, Costa
Rica, Dominican Republic, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama,
Trinidad and Tobago, The United States, Argentina, Bolivia, Brazil, Chile, Colombia,
Ecuador, Guyana, Paraguay, Peru, Uruguay, Venezuela, India, Japan, Pakistan, Philippines,
Sri-Lank, Thailand, Austria, Belgium, Cyprus, Denmark, Finland, France, West Germany,
Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland, Turkey, United Kingdom, Australia, New Zealand.

The PWT-2 sample has 100 countrics including {in addition to the previous 57
counlrics): Algeria, Benin, Burkina Faso, Burundi, Cameroon, Cape Verde, Central, Chad,
Cotoros, Congo, Gabon, Gambia, Ghana, Guinea, Guinea Bissau, Ivory Coast, Lesotho,
Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Rwanda, Scucgal,
Seychelles, Togo, Tunisia, Zambia, Zimbabwe, Jamaica, Bangladesh, Ilong Kong, Indonesia,
[sracl, Jordan, Korea, Malaysia, Singapore, Syria, Taiwan, Fiji, Papua New.
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Table A.1:

Fractiles of LSDV Estimators of the AR CoefTicient in Pancl Data

Smpl. size N=48; T+1 =63 N=13; T+1=120
AR/ Fract 0.05 0.5 0.95 0.05 0.5 0.95
LSDV1
0.89 0.8371 0.8553 0.8718 ().8481 0.8723 0.8932
0.91 0.8566 | 0.8739 | 0.8895 0.8688 0.8918 09113
0.93 0.8759 | 0.8925 | 0.9071 0.8897 0.9109 0.9287
0.95 0.8952 | 0.9104 | 0.9240 0.9107 0.9302 0.9463
0.97 0.9131 0.9277 | 0.9404 0.9311 0.9490 0.9629
0.99 0.9301 0.9437 | 0.9556 0.9501 0.9660 0.9782
0.999 09376 | 0.9505 | 0.9617 0.9583 0.9732 0.9844
LSDV2
0.89 0.8365 | 0.8546 | 0.8711 0.8481 0.8710 0.8915
0.91 0.8562 | 0.8732 | 0.8888 0.8681 0.8905 0.9094
0.93 0.8753 | 0.8919 | 0.9063 0.8892 0.9099 0.9273
0.95 0.8945 0.9097 | 0.9233 0.9098 0.9291 0.9448
0.97 09124 | 09271 0.9397 0.9297 0.9474 0.9614
0.99 0.9296 | 0.9431 0.9550 0.9490 0.9647 0.9771
1.00 09374 | 0.9505 | 0.9617 0.9579 0.9727 0.9837
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Table A.1 (Continued)

Smpl. size N=57; T+1 =4I N=100; T+1=31
AR/ Fract 0.05 0.5 0.95 0.05 0.5 0.95
LSDV1

0.89 0.8110 | 0.8333 | 0.8535 | 0.7916 0.8121 0.8314
0.91 0.8296 | 0.8515 | 0.8708 | 0.808%9 0.8293 0.8478
0.93 0.8476 | 0.8687 | 0.8877 | 0.8263 0.8460 0.8643
0.95 0.8657 | 0.8857 | 0.9036 | 0.8435 0.8621 0.8794
0.97 0.8827 | 0.9019 | 0.9188 | 0.8592 0.8777 0.8944
0.99 0.8988 | 0.9173 | 0.9334 | 0.8751 0.8926 0.9086

0.999 0.9058 | 0.9237 | 09395 | 0.8817 0.8990 09146

LSDV2
0.89 0.8101 | 0.8326 | 0.8529 | 0.7912 0.8117 0.8307
0.91 0.8285 | 0.8504 | 0.8700 | 0.8083 0.8285 0.8472
0.93 (.8469 | 0.8679 | 0.8864 | 0.8259 0.8454 0.8633
0.95 0.8649 | 0.8848 | 0.9028 | 0.8426 6.8617 0.8790
0.97 0.8820 | 0.9011 | 09183 0.8588 0.8771 0.8938
0.99 0.8981 | 0.9i65 | 0.9326 | 0.8744 0.8920 0.9080

1.00 0.9059 | 0.9238 | 0.9395 0.8818 0.8991 0.9147
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Table A.2:

Fractiles of the LSDV Estimators Under Groupwise Heteroskedasticity & Cross Sectional Correlation

Smpl. Size N=48; T+1=63 N=13: T+1=120
AR/ Fract 0.05 0.5 0.95 0.05 0.5 0.95
LSDV1
0.89 0.8305 | 0.8549 | 0.8788 0.8447 0.8718 0.8959
0.91 0.8488 | 0.8733 | 0.8953 | 0.8674 0.8922 0.9145
0.93 0.8691 0.8915 | 09128 0.8866 0.9107 0.9293
0.95 0.8885 | 0.9098 | 0.9292 | 0.9086 | 0.9300 | 0.9484
0.97 0.9071 0.9267 | 0.9451] 0.9301 0.9486 0.9640
0.99 0.9252 | 0.9426 | 0.9594 | 0.9484 0.9659 0.9796
0.999 0.8327 | 09502 | 0.9663 0.9557 0.9729 0.9853
LSDV2
0.39 0.8300 | 0.8543 | 0.8777 | 0.8439 0.8707 0.8947
0.91 0.8479 | 0.8727 | 0.8945 | 0.8665 | 0.8908 | 0.9126
0.93 0.8681 | 0.8909 | 0.9123 | 0.8863 | 0.9097 | 0.9281
0.95 0.8883 | 09092 | 09286 | 0.9081 | 0.9288 | 0.9468
0.97 0.9068 | 0.9260 | 0.9446 | 0.9291 | 0.9474 | 0.9628
0.99 0.9247 | 0.9421 | 0.9591 | 09476 | 0.9649 | 0.9785
1.00 0.9327 | 09499 | 09657 | 0.9563 | 0.9726 | 0.9852
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Table A.2: (Continued)

Smpl. Size N=57; T+1=41 N=100; T+1=31
AR/ Fract 0.05 0.5 0.95 0.05 0.5 0.95
LSDhV1
0.89 0.7979 | 0.8322 | 08643 | 0.7762 | 0.8099 | 0.8464
0.91 0.8160 | 0.8491 08818 | 0.7932 | 0.8286 | 0.8627
0.93 0.8356 | 0.8678 | 0.8987 | 0.8127 | 0.8442 | 0.8787
0.95 0.8538 | 0.8836 | 0.9144 | 0.8282 | 0.8596 | 0.8940
0.97 0.8704 | 0.8997 | 0.9281 (.8454 | 0.8759 | 0.9063
0.99 0.8879 | 09151 09418 | 0.8619 | 0.8896 | 0.9196
0.999 0.8963 | 0.9225 | 0.9476 | 0.8689 | 0.8976 | 0.9263
LSDV2
0.89 0.7973 0.8313 0.8635 | 0.7759 | 0.8095 | 0.8458
0.91 0.8154 | 0.8486 | 08811 | 0.7930 | 0.8280 | 0.8622
0.93 0.8353 | 0.8671 0.8978 | 0.8121 | 0.8437 | 0.8780
0.95 0.8531 0.8827 | 09138 | 0.8280 | 0.8592 | 0.8935
0.97 0.8698 | 0.8993 0.9276 | 0.8451 | 0.8755 | 0.9059
0.99 0.8869 | 09143 | 09411 | 08614 | 0.889] 0.9191
1.00 0.8949 | 09222 | 09476 | 0.8677 | 0.8968 | 0.9269
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FIGURE 1. Median-Bias of LSDV1 Estimator
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