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Abstract

Human beings make links with similar and dissimilar people based on certain attributes. In
this thesis, I propose a network formation model where agents have a dichotomic attribute, they
have preferences for similar and dissimilar individuals, and there is also a linking cost. Three
different networks are characterized using the concept of pairwise stability. As a result, agents
link with similar or dissimilar individuals if and only if their preferences reflect this behavior.
Finally, a discussion about the limitations and future research of this model is made.
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Chapter 1

Introduction

As social animals, human beings need to interact with other people to guarantee safety, compan-

ionship, efficiency in their daily life tasks, etc. Evidence suggests that individual characteristics

determine tie formation.

Homophily is the tendency of individuals to interact with similar people. McPherson et al.

(2001) define it as “the principle that contact between similar people occurs at a higher rate than

among dissimilar people". In Lazarsfeld et al. (1954), the famous quote “birds of the feather

flock together” summarizes the empirical effects of homophily. For instance, white American

students often make friends with other white schoolmates.1

Even when there is much evidence of homophily in the scientific literature, it is also true

that there are several situations in which it is not the dominant tendency. Heterophily is a socio-

logical concept whose main characteristic is the existence and maintenance of relations among

dissimilar individuals. See Lozares et al. (2014), Barranco et al. (2019). Many of these interac-

tions are based on complementarities among different skills/types and they impact positively on

1McPherson et al. (2001) remark that homophily in race and ethnicity determines strongly how we interact in
our daily surroundings. Other attributes are age, religion, education occupation and gender in this order. Examples
of homophilous tendencies can be found in friendship Currarini et al. (2009), Lazarsfeld et al. (1954), marriage
Kalmijn (1998) and certain labor relations Ibarra (1992).
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communication through weak ties Granovetter (1977).2,3

Sometimes, some individuals are homophilous and other individuals are heterophilous. For

instance, some Britpop musicians prefer to make professional and sentimental relationships with

other musicians from their same origin social class, whereas other musicians prefer to engage

with dissimilar individuals Millward et al. (2017). Another example is found in the ties between

customers and frontline employees, like waiters or clerks Streukens and Andreassen (2013). In-

trovert customers prefer to interact with extroverted employees and more extroverted customers

have stronger preferences for extroverted employees.

People take advantage of homophilous and heterophilous links in real life. For instance,

when unemployed individuals are seeking a job, the heterophilous interactions beyond their

strongest ties play a fundamental role in getting a new job. See Lin et al. (1981), Granovetter

(1970). However, evaluators tend to rank highly candidates similar to them unless they are well

informed about the extent of intergroup differences and they may condition their assessment in

candidates’ group belonging Bagues and Perez-Villadoniga (2013).

Homohpily and heterophily also play an important role in effective communication. Re-

ceivers and senders are homophilous on some relevant attributes because people tend to trust

in similar individuals. But they cannot be so similar because if they both were completely ho-

mophilous, such interaction would be redundant Rogers and Bhowmik (1970). For instance, the

interaction between women of different social classes increases awareness of different family

planning methods in low class women Liu and Duff (1972).

The objective of this thesis is to understand how homophilous and heterophilous preferences

determine network formation, for example in friendship relationships. Particularly, this work

focuses on the phenomenon found in Patacchini and Zenou (2016). In this paper, Patacchini and

Zenou analyze data about friendship networks among high-school students in black integrated

2Examples of heterophily can be found in investment banks’ tie formation Podolny (1993), interdisciplinary
teams like academic collaborations Jha and Welch (2010), Jones et al. (2008), Moody (2004), Newman (2000) and
effective risk-sharing among farmers Bramoullé and Kranton (2007), Fafchamps and Gubert (2007).

3Other examples related to effective communication are Korte and Milgram (1970) and Kerckhoff and Back
(1965), where weak ties reduced the time in diffusion processes.
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schools in America using the Coleman’s homophily index. This index is a normalized measure

that quantifies how homophilous are the links of each individual in a network, whose values

are bounded between 1 and -1. The more positive it is, the more the individual shows a ho-

mophilous trend in his interactions. The opposite is also true, a more negative measure implies a

dominance of heterophilous links. Scientists found that white students have strong homophilous

interactions as it can be seen in the right side of figure 1, in which the most frequent Coleman’s

homophily index is positive and near form one for white students. However, the distribution of

the Coleman’s index is bimodal for black students. This means that some black students interact

more frequently with black friends and some others make friendship links with white students,

as it can be seen in the left side of figure 1.

Figure 1: Distribution of black (left) and white (right) students according to their Coleman
indexes. Source: This figure is taken from Figure 1 in De Marti and Zenou (2017).

In De Marti and Zenou (2017), the authors propose a network formation model “that can

explain the socialization patterns in figure 1". However, the networks they characterize do not

show this bimodality in the Coleman’s index, except for particular examples (that will be exem-

plified in the following section).

Following the spirit of De Marti and Zenou (2017), I propose a network formation model

that reproduces this bimodality. In this model, agents have a dichotomic attribute, splitting

individuals into two disjoint groups. It is supposed that individuals like to have similar friends
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as well as dissimilar friends. The model allows that the strength of these two opposite forces

can be individual specific, i.e there is ex ante heterogeneity in individuals’ preferences. There is

also a constant linking cost.

Regarding network formation, it is considered the emergence of pairwise stable structures

as in the influential approach of Jackson and Wolinsky (1996). Intuitively, a pairwise stable

network is one in which connected individuals do not want to break their links and for any two

not connected individuals, at least one of them does not want to be linked with the other. I will

also calculate the Coleman’s index when this equilibrium is reached.

The main results characterize several pairwise stable networks. A network in which indi-

viduals link with all the agents is pairwise stable if and only if individuals have not extreme

homophilous and heterophilous preferences, and the linking cost is not so high. It is also proved

that the only pairwise stable network in which individuals only link with similar agents is the

network where individuals link in dyads. This segregated network is pairwise stable if and only

if the individuals’ preferences are sufficiently homophilous and the linking cost is relatively

high. Finally, I characterize a network that exhibits bimodality in Coleman indexes for one

group and unimodality for the other groups, characterizing the leading example in De Marti and

Zenou (2017).

For future research, it will be of interest to make some comparative statics, analyzing the

transition between theses pairwise stable networks as the homophilous and heterophilous pref-

erences varies. It would also be interesting to propose a new model where homophilous and

heterophilous preferences emerge due to an underlying process that do not explicitly assumes

homophily. For instance, a model could assume that individuals interpret better information

coming from similar people. As a consequence, individuals could make homophilous links.
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Chapter 2

Other Related Literature in Economics

The proposed model is inspired by several models in the scientific literature. Dasgupta and

Goyal (2009) propose a model in which individuals have two attributes. They have to choose

whether they join into two groups, only one group or none of them. In contrast to the proposed

model in this thesis, the decision that individuals pursue in their model is the adherence to groups

and not individual linking decisions. Moreover, they use the Nash equilibrium concept whereas

the pairwise stability equilibrium concept is used in this thesis. The focus is also different,

because I look at the opposing forces of homophily and heterophily in network formation, and

Dasgupta and Goyal look at the emergence of groups based on the further division of the prospect

generated by this group. An example is a group that produces a public good. Then, every

individual benefits from the public good as whole.

This work has a similar approach to the model proposed in Iijima and Kamada (2017). They

also propose a network formation model and focus on the formation of pairwise stable networks.

In this model, agents have multiple continuous attributes, their utilities depend on the distance

between direct and indirect connected individuals and the costs to be directly linked with other

agents. However, the authors model a situation in which individuals with multiple attributes

benefit less the higher is the social distance, defining a measure of how different attributes are

between two agents. Also, their main focus is on the macro properties of stable networks, as
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clustering and average path length, whereas this thesis focuses on the interactions of agents in a

micro level.

The model proposed in this work assumes that individuals care about the ratio of similar

and dissimilar friends. This choice is based on the proposal by Schelling (1971). In Schelling’s

proposal, there are two types of agents where each agent belongs to a certain group. Individuals

are happier in their neighborhood when the ratio of similar agents is above a certain threshold

than when this ratio is below it. If an individual is unhappy in his neighborhood, he moves

until he belongs to a neighborhood where his ratio is above this threshold. The main result

is that segregation emerges even when individuals have these mild preferences. Moreover, a

minority group tends to become more segregated from the majority group when its relative size

diminishes. The main difference with the proposed model is the notion of network, which is

crucial in this model whereas there is no notion of network in the Schelling’s model.

Finally, the proposed model is closely related to the model proposed by Currarini et al.

(2009). As in their model, it is assumed preferences for similarities and differences. Moreover,

each individual only recognizes if his friends are similar or different from his type (dichotomic

attributes). This last assumption is based on empirical evidence, because the main form of

differentiation among individuals is based on similar-different assessments, and no other elab-

orated forms of stratification. See McPherson et al. (2001) and Marsden (1988). However, the

Currarini and Jackson’s model is one of dynamic matching based model and ours is one shot

network formation model.
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Chapter 3

Model

3.1 Set up of the model

Let N = {1, 2, .., n} be the finite set of individuals. Every individuals has a dichotomic attribute

which takes valuesA orB. For that reason, there are two types in this model because individuals

split into two disjoint groups according to their attributes. This means that for every individual

i ∈ N , this individual belongs to Nk for some k ∈ {A,B}, where the set NA represents those

individuals with attribute A and the set NB represents those individuals with attribute B. Notice

that NA ∪NB = N . Let nA and nB their respective cardinalities and without loss of generality

nA ≥ nB ≥ 2. Finally, it is defined N−k = N −Nk for all k ∈ {A,B}.

The set of all possible networks is denoted as gN . The subset of N which only has elements

i and j is represented as ij. This notation also represents an undirected link between individuals

i and j, that is ij = ji. As usual, ij ∈ g means that i and j are connected under the network g

and ij /∈ g means that i and j are not connected under the network g. The network g + ij is the

network g to which it is added the link ij and the network g − ij is the network g to which it is

removed the link ij.

Taking a fixed network g ∈ gN , for every i ∈ N it is defined the set of his friends as Ni(g),

the set of his similar friends as Si(g) and the set of his dissimilar friends as Di(g). Formally:
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• Ni(g) = {j ∈ N | ij ∈ g}

• Si(g) = {j ∈ N | ij ∈ g, i, j ∈ Nk for some k ∈ {A,B} }

• Di(g) = {j ∈ N | ij ∈ g, i ∈ Nk, j ∈ N−k for some k ∈ {A,B} }

Their cardinalities are defined as ni(g) = |Ni(g)|, si(g) = |Si(g)| and di(g) = |Di(g)|.

When there is no confusion on network g, there will be expressed their cardinalities simply by

ni, si and di respectively.

All individuals like linking with similar and dissimilar agents. Individuals are potentially

heterogeneous in these preferences. Then, it is supposed an assumption close to Schelling’s

proposal Schelling (1971), where individuals only care about the ratios. They obtain more utility

when these ratios increase, with decreasing marginal utility. These preferences are represented

using the function f : R+ −→ R, such as f(x) increases with x and f(x+ 1)− f(x) decreases

with x. It is supposed that f(0) = 0 and the linking cost is c > 0 for every agent.1

Formally, for every individual i ∈ N there is a utility function ui : {g | g ⊂ gN} → R such

as:

ui(g) = λi f(ris(g)) + (1− λi) f(rid(g))− c ni(g)

where ris(g) = si(g)
ni(g)

is the ratio of similar friends of i in the network g, rid(g) = di(g)
ni(g)

is the ratio

of dissimilar friends of i in the network g. Let the intensity of homophily as λi ∈ (0, 1), for

every i ∈ N . It is possible to assume a common parameter λ for all individuals and many of

the results in this this will remain unaltered. However, it is necessary some heterogeneity in the

intensities to characterize a network which exhibits a bimodality in distribution of the Coleman’s

indexes of some type of individuals.

Notice that the parameter ris(g) is defined as a homophily index in Currarini et al. (2009) and

the intensity of homophily λi is a kind of homophily index in the preferences for each individual,

a same type bias in the individuals’ preferences.2

1This means that the cost function is linear, thus the marginal cost is constant.
2Currarini et al. define a same type bias in the preferences as those preferences whose return to additional
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I use the definition of pairwise stable network. This definition was introduced by Jackson

and Wolinsky (1996). In this thesis, it is defined a pairwise stable network as:

Definition 1. A network g is pairwise stable if two conditions are satisfied:

1. For every pair of connected individuals in the network, both of them are better if they keep

being connected than without their link. Formally,

∀ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij).

2. For every pair of non-connected individuals, at least one of them does not want to make a

tie with the other. Formally,

∀ij /∈ g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

In this thesis, it is used the definition 1 to characterize some networks. It is also defined some

networks that will be analyzed.

Definition 2. A network g is completely connected network if every individual is linked with all

other agents. Formally, Ni(g) = N − {i} ∀i ∈ N .

Definition 3. A network g is fully intraconnected if all individuals of the same type are con-

nected.

Definition 4. A network g is segregated if agents only link with similar individuals.

friendship is larger when they have more similar friends. This definition can be adapted to the proposed model and
say that an individual has same type bias in his preferences when his intensity of homophily is greater than a half.
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3.2 Characterization of some equilibria

Let me clarify that the proofs of each proposition can be found in the Appendix A. Before enun-

ciating the propositions, it will be introduced some important notation to characterize pairwise

stable networks. Because there are a finite number of individuals, it is defined the greatest and

the lowest λi values of sets NA and NB as:

λ̄k = max
i∈Nk

λi ∀k ∈ {A,B}

λk = min
ik

λi ∀k ∈ {A,B}

These notations will be used to establish upper and lower bounds of the intensity of ho-

mophily per type. The first result states that a fully intraconnected network cannot be segre-

gated.

Proposition 1. If a fully intraconnected network is pairwise stable, then it cannot be segregated.

Proposition 1 means that for any fully intraconnected network, there must be some indi-

viduals who are linked with dissimilar people. This result accords with the analyzed data in

Patacchini and Zenou (2016), where there are black and white students in integrated colleges

who link with dissimilar classmates.

The previous result states that a network cannot be fully intraconnected and segregated at

the same time. The next result sets that the only segregated pairwise stable network emerges

when all individuals link in pairs or dyads.3 A similar result was found in the co-author model

in Jackson and Wolinsky (1996), where the network is strongly efficient if individuals are linked

in dyads. For that reason, It will be assumed that nA or nB are even numbers.4 The concept

crossed link will be used to indicate a link between different types.

3They link in dyads because the utility function considers ratios. When individuals only link with similar or
dissimilar individuals, adding new links does not change these ratios at all.

4When nA and nB are odd numbers, It is possible to find similar conditions in which all individuals link in
dyads and those individuals who are not linked, they both prefer to be alone and do not make links with dissimilar
individuals.

10



Proposition 2. Let nB even. The only segregated pairwise stable network is that in which

individuals link in dyads (as the one in panel 2b). The network in dyads is pairwise stable if and

only if the linking cost is intermediate and preferences are sufficiently homophilous. Thus, no

individual breaks his same type link and even the more heterophilous individuals do not want to

make a crossed link.5

Formally, the expression “the linking cost is intermediate" means:

max
i∈Nk

{0, f(1/2)− λif(1)} < c ≤ min
i∈N
{λif(1)} for some k ∈ {A,B},

and the expression “preferences are sufficiently homophilous" means:

λk ≥
f(1/2)

2f(1)
for the same k ∈ {A,B}.

Assertive mating can induce segregated networks in dyads. This way of mating means that

animals and humans tend to choose similar sexual partners in phenotypes, because this increases

the altruism among family members Thiessen and Gregg (1980), Thiessen et al. (1997). More-

over, human couples that had been together longer have more similar perceived personality traits

Little et al. (2006).

Both results are represented in figure 2. No network has crossed links. However, the network

in panel 2a is fully intraconnected, a result that is impossible according to proposition 1. The

only segregated network possible in this model is formed by dyads, represented in panel 2b.

Notice that this network is not fully intraconnected.

5It is possible that all individuals have the same homophilous preferences. In that case, all individuals have
homophilous preferences and no one wants to make a crossed link.
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(a) Fully intracon-

nected

(b) Dyads

Figure 2: Segregated networks. Source: Own elaboration.

Before enunciating other propositions, it is introduced the next notation. For a network g,

individual i has ni(g) friends, where si(g) friends share his same attribute. Then, the marginal

change in benefits of breaking a link with a similar individual is defined as:

∆k
i s = f

(
si(g)

ni(g)

)
− f

(
si(g)− 1

ni(g)− 1

)
≥ 0 ∀i ∈ Nk, k ∈ {A,B}.

This expression represents the marginal benefit that individual i gets in his homophilous

preferences when he breaks with a similar individual. Notice that ∆k
i s is decreasing in the ratio

ris(g) because it is assumed that f(x+ 1)− f(x) decreases with x ∈ R+. Intuitively, individuals

get larger marginal benefits adding links with similar people when they have few similar friends

than when they have many similar friends.

Now, imagine that we have a hypothetical situation where individual imakes a new link with

a similar agent. This individual would have ni(g)+1 friends and si(g)+1 similar friends. Then,

the marginal change in benefits of adding a new link with a similar individual is defined as:

∆k
i s
′ = f

(
si(g) + 1

ni(g) + 1

)
− f

(
si(g)

ni(g)

)
≥ 0 ∀i ∈ Nk, k ∈ {A,B}.
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It is important to distinguish between the expressions ∆k
i s and ∆k

i s
′. The former represents

the real marginal benefit that individual i gets because it compares the homophilous component

of his utility function taking as reference g with this same component taking as reference the

network g when a link with a similar individual is broken. The later expression represents a

hypothetical marginal benefit because it compares the homophilous component of his utility

function when it is added a link with a similar individual to g with this same component taking

as reference the original network g.

However, breaking or adding links with a similar individual also include a loss in his associ-

ated utility to his heterophilous component.

When agent i has ni(g) friends, the loss in his utility due to breaking a link with a similar

individual is:

∆̃k
i d = f

(
di(g)

ni(g)

)
− f

(
di(g)

ni(g)− 1

)
≤ 0 ∀i ∈ Nk, k ∈ {A,B}.

This loss is related to the heterophilous part of the individuals’s preferences. When indi-

viduals breaks his link with a similar individual, the ratio of dissimilar friends is bigger than

the original ratio when this link is included. For that reason, individual i has a loss in his het-

erophilous preferences.

In the hypothetical case where individual i has ni(g)+1 friends, the loss associated to adding

a new link with a similar individual is:

∆̃k
i d
′ = f

(
di(g)

ni(g) + 1

)
− f

(
di(g)

ni(g)

)
≤ 0 ∀i ∈ Nk, k ∈ {A,B}.

Similarly, for every agent i ∈ Nk, k ∈ {A,B}, the marginal change in benefits of breaking

with a dissimilar individual when he has ni(g) friends and di(g) dissimilar friends is defined as:

∆k
i d = f

(
di(g)

ni(g)

)
− f

(
di(g)− 1

ni(g)− 1

)
≥ 0 ∀i ∈ Nk, k ∈ {A,B}.
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For the hypothetical case where individual i adds a new link with a dissimilar individual, the

marginal change in benefits of adding a new link with a dissimilar individual is defined as:

∆k
i d
′ = f

(
di(g) + 1

ni(g) + 1

)
− f

(
di(g)

ni(g)

)
≥ 0 ∀i ∈ Nk, k ∈ {A,B}.

The loss in his utility associated to breaking or adding a link with a dissimilar individual are:

∆̃k
i s = f

(
si(g)

ni(g)

)
− f

(
si(g)

ni(g)− 1

)
≤ 0 ∀i ∈ Nk, k ∈ {A,B},

∆̃k
i s
′ = f

(
si(g)

ni(g) + 1

)
− f

(
si(g)

ni(g)

)
≤ 0 ∀i ∈ Nk, k ∈ {A,B}.

Finally, it is defined n−k ≡ nN−Nk
for k taking values A or B, this implies that n−A = nB and

n−B = nA.

Once it has been remarked that a segregated and fully intraconnected network is not possi-

ble in this model, I characterize a particular case of full intraconnection: when the network is

completely connected.

Proposition 3. A completely connected network g is pairwise stable if and only if:

1. The linking cost is relatively low.

c < min{∆Bd , ∆Ad, γ1A , γ
1
B}

where:

γ1k =
∆ks∆kd− ∆̃kd∆̃ks

∆ks+ ∆kd− ∆̃kd− ∆̃ks
, ∆ks∆kd > ∆̃kd∆̃ks ∀ k ∈ {A,B}

2. The intensity of homophily of every agent does not take extreme values.

λk λ̄k ∈ (ak, bk) ∀k ∈ {A,B}
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where:

ak =
c− ∆̃kd

∆ks− ∆̃kd
, bk =

c−∆kd

∆̃ks−∆kd
0 ≤ ak < bk ≤ 1 ∀k ∈ {A,B}

This result is straightforward to follow, because the linking cost is low and individuals do

not have an extreme preference of linking with similar or dissimilar individuals (the intensity of

homophily is close to one half). When the linking cost is not so low, individuals do not link with

all the agents. In fact, they will link more with similar or different individuals according to their

homophilous bias in their preferences. When the intensity of homophily of some individual is

beyond its upper bound, the individual has homophilous preferences and he breaks a link with a

dissimilar individual. Similarly, when the intensity of homophily of some individual is less than

its lower bound, then this individual breaks a link with a similar agent.

I think that completely connected networks could emerge in small indigenous communities,

where individuals of different clans or groups need to communicate and cooperate among them

to survive. It is plausible that these individuals do not have extreme homophilous preferences

because they belong to the same community. The linking cost is relatively low, because these

communities are small and they can be connected with the rest of individuals.

Finally, the bias in the networks found in Patacchini and Zenou (2016) is reproduced in this

thesis (see the figure 1 in Chapter 1). For that reason, in this thesis will be used the inbreeding

homophily concept. This name was given by Coleman and is also known as the Coleman index.

This measure was used by Currarini et al. (2009) and it quantifies the homophilous bias that an

individual presents.

For an individual i ∈ N of type k ∈ {A, B}, his inbreeding homophily in the network g is

computed as:

Hi(g) =
ris(g)− wi

1− wi

,

where the relative fraction of type k in the population is represented as wi = nk

n
. If the Coleman

index is close to one, the individual shows an homophilous bias. If this measure is close to
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minus one, the individual shows a more heterophilous bias. When the index is zero, this means

that the individual have baseline homophily because ris(g) = wi.6

In the segregated network in dyads, all individuals have a Coleman index of one. If all

individuals have the same intensity of homophily and this intensity decreases enough, then each

individual makes a new crossed link. If nA = nB, the Coleman index of each individual changes

from one to zero. Then, all individuals stop being so homophilous in their links and they have

baseline homophily.

Similarly, all individuals have the same index in the completely connected network. This

index is Hi = − 1
n−1 ∀i ∈ N . If all individuals have the same intensity of homophily and this

intensity increases and becomes more homophilous, then the Coleman index of each individual

of type k also increases and it is Hi = − 1
n−2 + nk

(n−2)(n−k)
∀i ∈ Nk, ∀k ∈ {A,B}. When

the intensity of homophily decreases, the Coleman index of each individual also decreases to

Hi = − 2
n−2 ∀i ∈ Nk, ∀k ∈ {A,B}.

Notice that all individuals have the same Coleman index in each of the previous networks,

and they do not represent the bimodality of the inbreeding homophily in the left panel of figure

1, where some individuals of certain type show homophily in their links and other individuals

show heterophily in their links.

I want to characterize a similar network to figure 3. In this network, there are two types of

individuals A and B. In this figure, individuals A are homophilous in their links. However, two

individuals of type B are heterophilous and four individuals are homophilous. Heterophilous

individuals are represented as B∗ and homophilous individuals are presented as B∗∗.

6Notice that this measure has a slight bias in small samples, because numerator of ris does not take into account
the individual i in the numerator whereas wi does. See Currarini et al. (2009) & Coleman (1958) for a complete
exposition of the index and its applications.
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Figure 3: Network with bimodality in Coleman’s index for type B. Source: Own elaboration.

The indviduals of type B are splited into two groups: the group of B∗ individuals is con-

formed by heterophilous individuals and the group of B∗∗ individuals is conformed by ho-

mophilous agents. Computing the Coleman index per group:7

HA =
5
6
− 6

12

1− 6
12

=
2

3

HB∗ =
0− 6

12

1− 6
12

= −1

HB∗∗ =
3
4
− 6

12

1− 6
12

=
1

2
.

Other scientists have found stable networks, exhibiting a bimodality in the Coleman indexes.

Using the connections model, De Marti and Zenou (2017) show the two examples of stable

networks that exhibit the main features of bimodality and unimodality of figure 1. The next

figure shows the examples proposed by De Marti and Zenou. In the left panel, the index is

unimodal for types A and bimodal for types B. In the right panel, the index is bimodal for both

types.

7It is represented the Coleman index per group because all individuals of the same group behave similarly.
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Figure 4: Stable networks proposed in De Marti and Zenou (2017) showing example 4 (left
panel) and figure 9.c (right panel). Source: This figure is taken from De Marti and Zenou (2017)

It is important to remark that these examples are specific cases and there is no full charac-

terization of pairwise stable networks similar to these examples. The next proposition brings

conditions in which a network similar to figure 3 is pairwise stable.

Proposition 4. Let nA = nB. A network g such that:

a) All individuals of type A are linked among themselves and every individual of type A only

links with one type B individual.

b) Some individuals B are only linked with one type A individual.

c) There are other type B individuals that: (1) are linked among themselves and (2) each of

them is linked to one individual of type A,

is pairwise stable if and only if

1. The linking cost does not take extreme values.

max{ψ2
A, 0} < c < min{γ2A, γ2B∗∗ , ∆Ad, ∆As, ∆B∗

d, ∆B∗∗
s, ∆B∗∗

d}

where:

ψ2
A =

∆Ad ∆̃As′ −∆Ad′ ∆̃As

∆Ad− ∆̃As−∆Ad′ + ∆̃As′

γ2k =
∆ks∆kd− ∆̃kd∆̃ks

∆ks+ ∆kd− ∆̃kd− ∆̃ks
, ∆ks∆kd > ∆̃kd∆̃ks ∀k ∈ {A, B∗∗}
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2. The intensity of homophily is relatively low for those individuals of type B only connected

with agents of type A. Formally, if B∗ is the set of these individuals their intensity of

homophily must satisfy:

λ̄B
∗
< min{∆B∗

d− c
∆B∗d

,
c− ∆̃B∗

d′

∆B∗s′ − ∆̃B∗d′
}

3. The intensity of homophily for the rest of individuals does not take extreme values.

max{ c− ∆̃Ad

∆As− ∆̃Ad
,

∆Ad′ − c
∆Ad′ − ∆̃As′

0} < λA ≤ λ̄A <
∆Ad− c

∆Ad− ∆̃As

c− ∆̃B∗∗
d

∆B∗∗s− ∆̃B∗∗d
< λB

∗∗ ≤ λ̄B
∗∗
<

∆B∗∗
d− c

∆B∗∗d− ∆̃B∗∗s

Condition 1 implies that individuals can link because it is not so costly make it, but its lower

bound also implies that they cannot link with so many people. This assumption seems plausible

for American students, because making friends cannot be so costly but eventually people stop

making new friends. Condition 2 guarantees heterophilous preferences for those individuals in

the group B∗. Maybe some black students prefer to be with white students because they share

similar interests or way of life. For that reason, they only link with a dissimilar individuals.

Condition 3 implies that individuals have homophilous preferences, but not so homophilous

because they also make a crossed link.

Notice that if individuals of the group B∗ does not satisfy condition 2, they will have more

homophilous preferences and it is possible that they may link with other individuals of the group

B∗∗. Of course, it is also needed that individuals in the groupB∗∗ are willing to form these links.

This could happen if thes individuals also have homophilous preferences or if the linking cost

is lower. Eventually, the bimodality in Coleman’s indexes of individuals of type B become a
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unimodal distribution, where all individuals homophilously link.

Proposition 4 characterizes a particular network which exhibits bimodality in Coleman in-

dexes for some type of individuals. Figure 1 represents this bimodality for black students in

American colleges, whereas white students show a homophilous distribution in their indexes.

Britpop musicians also show these tendencies, because some artists make professional and sen-

timental relationships with individuals from their same origin social class whereas there are

other musicians which prefer to link with dissimilar individuals. Millward et al. (2017)

It is important to clarify that these networks are a rough representation of these phenomena,

because the distribution of the Coleman indexes would be one bar for individuals of type A

and two bars for individuals of type B. However, I think that this is a first approach to analyze

bimodality in the Coleman indexes. In the next chapter it will be discussed some limitations of

this model as well as aspects to be considered for future research.
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Chapter 4

Discussion and conclusions

In this thesis, I was interested in the role of homophilous and heterophilous preferences in the

emergence of stable networks. It was proposed a network formation model where individuals

have homophilous preferences, they only care about the ratio of similar and dissimilar friends,

and there is a constant linking cost. Finally, some networks were characterized, providing the

conditions to guarantee stability.

It has been proved that a pairwise stable network cannot be segregated and fully intracon-

nected at the same time, because in this model individuals care about the ratio of similar and

dissimilar friends. This result can be compared with the previous arguments of effective com-

munication, because homophilous and heterophilous ties help individuals to get a new job Lin

et al. (1981), Granovetter (1970) and Rogers and Bhowmik (1970). Similarly, it was proved that

the only segregated network is those formed by dyads.

Finally, it was proposed a network where some individuals of the same type are homophilous

and other individuals are heterophilous. The conditions to guarantee stability are intuitive, be-

cause the individuals who had heterophilous preferences showed negative Coleman indexes,

whereas the rest of homophilous individuals had positive Coleman indexes. These conditions

are the main result, because I have characterized a network which exhibits a bimodality in the

Coleman indexes that Patacchini and Zenou (2016) reported.
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The most controversial assumption is related to the homophilous and heterophilous prefer-

ences. If individuals are homophilous, they will link with similar agents. I recognize that this

model is a first approach, where individuals have these preferences somehow. It will be inter-

esting to propose another model where an underlying process produces these homophilous and

heterophilous preferences. For instance, in Bagues and Perez-Villadoniga (2013) a similar-to-

me-in-skills effect arises because evaluators highly rank those individuals with similar abilities.

Another example can be found in Kets and Sandroni (2019), where the uncertainty of individ-

uals’ actions leads to homophilous interactions because players face less strategic uncertainty

when they interact with members of their same group.

For future research, it could be proposed and make some comparative statics of more pair-

wise stable networks, where certain networks transit from some configuration to others as the

intensity of homophily and heterophily change. A welfare analysis could also be made, finding

those networks which are the most efficient in a utilitarian sense.
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Appendix A

Proofs of the propositions

Proposition 1. If a fully intraconnected network is pairwise stable, then it cannot be segregated.

Proof of proposition 1. Suppose the contrary, that is there is a network g which is fully in-

traconnected and segregated. Because g is segregated, for all individual i in the network,

ris(g) = ni(g)
ni(g)

= 1 and rid(g) = 0. Because g is fully intraconnected, pairwise stability im-

plies that:

ui(g) = λif(1)− c ni(g) ≥ λif(1)− c (ni(g)− 1) = ui(g − ij)

=⇒

0 ≥ c.

But this is a contradiction, because it was supposed c > 0.

Before the proof of the proposition 2, I will call individuals of certain types as his type when

there is no possibility of confusion. For example, if individual i is such as i ∈ NA, then i ≡ A.

A crossed link is represented as AB, a link between two individuals of type A is represented as

AA and a link between two individuals of type B is represented as BB.

Proposition 2. Let nB even. The only segregated pairwise stable network is that in which

individuals link in dyads (as the one in panel 2b). The network in dyads is pairwise stable if and
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only if the linking cost is intermediate (maxi∈Nk
{0, f(1/2) − λif(1)} ≤ c ≤ mini∈N{λif(1)}

for some k ∈ {A,B}) and preferences are sufficiently homophilous (λk ≥ f(1/2)
2 f(1)

for the previous

k ∈ {A,B}). Thus, no individual breaks his same type link and even the more heterophilous

individuals do not want to make a crossed link.

Proof of proposition 2. Let nB even. Supposing the contrary, that is there is a segregated pair-

wise stable network and it is different of the network in dyads. This means that some individual

is linked with three or more similar agents. Without loss of generality, If it is supposed that the

type of this individual is A and he is linked with mA individuals, where mA ≥ 3.1 But this

individual is better if he removes a link, because uA(g − AA) ≥ uA(g). This is due to:

uA(g − AA) = λAf(1)− c (mA − 1) ≥ λAf(1)− cmA for mA ≥ 3.

For that reason, the only segregated pairwise stable network is the network in dyads. Now, I

have to prove to conditions that guarantee that this network is pairwise stable.

Let’s suppose that g is a network in which individuals link in dyads. I have to prove that each

individual does not want to break his only link and does not want to add new links. Without loss

of generality, let’s take an individual of type A. It means that he links with a similar individual,

this implies rAd (g) = 0
1

= 0 and rAs (g) = 1. His utility function is uA(g) = λAf(1)− c

• Breaking a link

I have to prove that uA(g) ≥ uA(g − AA). Suppose that the linking cost is not so high. This

condition can be expressed as:

c ≤ min
i∈N
{λif(1)} (A.1)

But this is exactly the condition that guarantees that the individual does not want to break his

1It will be used the notation mA instead of nA because it could be confused with the cardinality of the set of
individuals of type A.
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link, because

uA(g) = λAf(1)− c ≥ 0 = uA(g − AA)

• Adding a link

Notice that individuals do not add a new link with another similar agent, because a new link

does not add more benefits and they pay twice the linking cost. I have to prove that crossed links

are not possible. The next condition guarantees this result:

max{0, f(1/2)− λif(1)} < c ∀i ∈ Nk for some k ∈ {A,B} (A.2)

λk ≥
f(1/2)

2 f(1)
for some k ∈ {A, B} (A.3)

This condition can be interpreted as the linking cost and their intensity of homophily are

relatively high for some type of individuals. In particular, the condition A.3 guarantees that

conditions A.1 and A.2 are compatible.

I prove that condition A.2 is also a necessary and sufficient condition to guarantee that

crossed links will not be added. The condition A.2 is interpreted as: for at least one type of

individuals, the linking cost of adding a new crossed link is higher than the benefit of this new

link. If this condition does not hold, there are at least one individual in of each type such as they

do not satisfy the condition A.2. Then, these individuals would make a new link between them

and the network g would not be pairwise stable and segregated.

Proposition 3. A completely connected network g is pairwise stable if and only if:

1. The linking cost is relatively low.

2. The intensity of homophily of every agent does not take extreme values.

Proof of proposition 3. Let’s suppose that g is a completely connected network. This implies:

ni(g) = n− 1, si(g) = nk − 1, di(g) = n−k, ∀i ∈ Nk, ∀k ∈ {A,B}
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In this proposition, the linking cost is relatively low means:

c < min{∆Bd , ∆Ad, γ1A , γ
1
B} (A.4)

where:

γ1k =
∆ks∆kd− ∆̃kd∆̃ks

∆ks+ ∆kd− ∆̃kd− ∆̃ks
, ∆ks∆kd > ∆̃kd∆̃ks ∀ k ∈ {A,B}

The last condition related to the intensity of homophily is expressed as:

λk λ̄k ∈ (ak, bk) ∀k ∈ {A,B} (A.5)

where:

ak =
c− ∆̃kd

∆ks− ∆̃kd
, bk =

c−∆kd

∆̃ks−∆kd
0 ≤ ak < bk ≤ 1 ∀k ∈ {A,B}

Because everybody is linked in this network, I have to verify that for every individual does

not want to break their links. Without loss of generality, it will be supposed that i ∈ N is an

individual of type A. I will prove that uA(g) ≥ uA(g − AB) and uA(g) ≥ uA(g − AA).

• The individual does not want to break a link with an individual of type A.

I have to prove

uA(g) ≥ uA(g − AA)

If this inequality is satisfied, then

uA(g)− uA(g − ij) ≥ 0

λA ∆As+ (1− λA) ∆̃Ad− c ≥ 0

λA

(
∆As− ∆̃Ad

)
+ ∆̃Ad− c ≥ 0

26



Because ∆As− ∆̃Ad > 0, the last inequality can be expressed as:

λA ≥
c− ∆̃Ad

∆As− ∆̃Ad

But this mathematical condition is satisfied because it has been supposed condition A.5, that

is:

λA ≥ λA ≥ c− ∆̃Ad

∆As− ∆̃Ad

this means that uA(g) ≥ uA(g − AA).

• The individual does not want to break a link with an individual of type B.

I have to prove

uA(g) ≥ uA(g − AB)

Substituting these utilities

uA(g)− uA(g − AB) ≥ 0

λA ∆̃As+ (1− λA) ∆Ad− c ≥ 0

λA

(
∆̃As−∆Ad

)
+ ∆Ad− c ≥ 0

because ∆̃As−∆Ad < 0, this last inequality can be written as:

λA ≤
c−∆Ad

∆̃As−∆Ad

But it was supposed the condition A.5 and this implies:

λA ≤ λ̄A ≤ c−∆Ad

∆̃As−∆Ad

Because this inequality holds, the individual does not have incentives to break his link with
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individual B.

uA(g) ≥ uA(g − AB)

I can prove that every individual of type B does not want to break his links. For that reason, I

have proved that a completely connected network g is pairwise stable.

Notice that condition A.4 is made to guarantee 0 ≤ ak < bk ≤ 1 ∀k ∈ {A, B}. Condition

A.4 implies that the marginal benefit of linking with all individuals must be greater than its

marginal cost.

Proposition 4. Let nA = nB. A network g such that:

i) Every individual i ∈ NA is connected with the rest of individuals in NA and he is linked

with one individual B.

ii) Some individuals i ∈ NB are only linked with one individual A. The set of these individ-

uals is called NB∗ and its cardinality nB∗

iii) Some individuals i ∈ NB are linked with one individual A and the rest of individuals in

NB, excepting those individuals that satisfy ii). The set of this individuals is called NB∗∗

and its cardinality nB∗∗ ,

is pairwise stable if and only if

1. The linking cost does not take extreme values.

2. The intensity of homophily is relatively low for those individuals of typeB only connected

with agents of type A.

3. The intensity of homophily for the rest of individuals does not take extreme values.

Proof of proposition 4. Suppose g is a network that satisfies conditions i), ii) and iii) of Propo-

sition 4. Because all individuals have one crossed link, this means that di(g) = 1 ∀i ∈ N

and:
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si(g) =


nA − 1 ∀i ∈ NA

0 ∀i ∈ NB∗

nB∗∗ − 1 ∀i ∈ NB∗∗

ni(g) =


nA ∀i ∈ NA

1 ∀i ∈ NB∗

nB∗∗ ∀i ∈ NB∗∗

I have to prove that for every i ∈ N , they do not want to remove their links and they do not

prefer to add a new link that does not exist in g.

Breaking links

• Individuals of type A

Consider any individual of type A. Because he links with all individuals of type A and he links

with one individual of type B, I have to verify that he prefers these links.

I have to prove that individual A does not want to break his links with another individual of

type A, i.e

uA(g) ≥ uA(g − AA)

Computing these utilities:

λAf

(
nA − 1

nA

)
+(1−λA)f

(
1

nA

)
−c nA ≥ λAf

(
nA − 2

nA − 1

)
+(1−λA)f

(
1

nA − 1

)
−c (nA−1)

Using the definitions of the benefit of linking with a similar individual and its associated cost:

λA∆As+ (1− λA) ∆̃Ad ≥ c

λA

(
∆As− ∆̃Ad

)
≥ c− ∆̃Ad

because the expresion ∆As− ∆̃Ad > 0, the last inequality can be expressed as:

λA ≥
c− ∆̃Ad

∆As− ∆̃Ad
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The next condition guarantees that all individuals A does not want to break a link with similar

individuals.

λA ≥
c− ∆̃Ad

∆As− ∆̃Ad
(A.6)

Now, I have to prove that individual A does not want to break his only link with individual

of type B, i.e.

uA(g) ≥ uA(g − AB)

Computing these utilities:

λAf

(
nA − 1

nA

)
+ (1− λA)f

(
1

nA

)
− c nA ≥ λAf (1)− c (nA − 1)

λA∆̃As+ (1− λA)∆Ad ≥ c

λA

(
∆̃As−∆Ad

)
≥ c−∆Ad

∆Ad− c ≥ λA

(
∆Ad− ∆̃As

)

The individual of type A does not want to break his crossed link if and only if:

∆Ad− c
∆Ad− ∆̃As

≥ λA

The next condition guarantees that all individuals of typeA do not want to break their crossed

links.
∆Ad− c

∆Ad− ∆̃As
≥ λ̄A (A.7)

• Individuals of type B

Because individuals of type B split into two groups, consider these possible cases.

Case 1. The individual of type B belongs to group NB∗ . I have to prove that he does not
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want to break his only link, i.e.

uB∗(g) ≥ uB∗(g − AB∗) = 0

(1− λB∗)f(1)− c ≥ 0

Because ∆B∗
d = f(1), then

∆B∗
d− c

∆B∗d
≥ λB∗ .

The next condition guarantees that individuals of the group NB∗ do not want to break their

crossed links.
∆B∗

d− c
∆B∗d

≥ λ̄B∗ . (A.8)

Case 2. The individual of type B belongs to group NB∗∗ . I have to prove that an individual

of the group B∗∗ does not want to break his links with an individual of type A

uB∗∗(g) ≥ uB∗∗(g − AB∗∗)

λB∗∗f

(
nB∗∗ − 1

nB∗∗

)
+ (1− λB∗∗)f

(
1

nB∗∗

)
− c nB∗∗ > λB∗∗f (1)− c (nB∗∗ − 1),

this condition is satisfied if and only if

∆B∗∗
d− c

∆B∗∗d− ∆̃B∗∗s
> λB∗∗ .

The next condition guarantees that all individuals of the group NB∗∗ do not want to break their

crossed links.
∆B∗∗

d− c
∆B∗∗d− ∆̃B∗∗s

> λ̄B∗∗ . (A.9)

Now, I will show that individuals does not want to break their links with other members of

31



the group B∗∗. I have to prove:

uB∗∗(g) ≥ uB∗∗(g −B∗∗B∗∗)

λB∗∗f

(
nB∗∗ − 1

nB∗∗

)
+ (1− λB∗∗)f

(
1

nB∗∗

)
− c nB∗∗ ≥

≥ λB∗∗f

(
nB∗∗ − 2

nB∗∗ − 1

)
+ (1− λB∗∗)f

(
1

nB∗∗ − 1

)
− c (nB∗∗ − 1),

this can be written as

λB∗∗∆B∗∗
s+ (1− λB∗∗)∆̃B∗∗

d ≥ c.

The B∗∗ prefers to be connected with an individual of the group NB∗∗ if and only if

λB∗∗ ≥ c− ∆̃B∗∗
d

∆B∗∗s− ∆̃B∗∗d
.

The next condition guarantees that all individuals of the group NB∗∗ do no want to break their

links with members of the same group.

λB∗∗ >
c− ∆̃B∗∗

d

∆B∗∗s− ∆̃B∗∗d
. (A.10)

Adding links

• Individuals of type A

Let’s take an arbitrary individual of type A. Because he is linked with all the similar individual,

I just have to show that he does not want to add new crossed links, i.e.

uB∗∗(g) > uB∗∗(g + AB)
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λAf

(
nA − 1

nA

)
+(1−λA)f

(
1

nA

)
−c nA > λAf

(
nA − 1

nA + 1

)
+(1−λA)f

(
2

nA + 1

)
−c (nA+1).

Using the definition of benefits of adding a new link with a dissimilar individual:

c > λA∆̃As′ + (1− λA) ∆Ad′.

The condition for no addition of new crossed links is:

λA >
∆Ad′ − c

∆Ad′ − ∆̃As′
.

If it is supposed the next condition, all the individuals of type A do not to make a new crossed

link.

λA >
∆Ad′ − c

∆Ad′ − ∆̃As′
. (A.11)

• Individuals of type B

Again, there are two possible cases for this type of individuals.

Case 1. The individual belongs to group B∗. Because he does not obtain more utility linking

with dissimilar individuals, I have to verify that he does not want to make new links with similar

individuals.

uB∗(g) > uB∗(g +B∗B∗∗),

this expression can be written as

(1− λB∗)f(1)− c > λB∗f(1/2) + (1− λB∗)f(1/2)− 2 c

c > λB∗∆B∗
s′ + (1− λB∗)∆̃B∗

d′,

where ∆B∗
s′ = f(1/2). This last inequality can be represented as:

c− ∆̃B∗
d′

∆B∗s′ − ∆̃B∗d′
> λB∗ .
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The next condition guarantees that individuals of the group NB∗ do not want to make links

with individuals of the group NB∗∗ .

c− ∆̃B∗
d′

∆B∗s′ − ∆̃B∗d′
> λ̄B∗ . (A.12)

Case 2. The individual belongs to group B∗∗. Notice that an individual of the group B∗∗

cannot make new links with other individuals, because he is completely linked with the members

of his same group, whereas individuals of the group B∗ and type A individuals do not want to

make new links.

As it was shown, the network g is pairwise stable because all individuals of different types

are better with their links than without deleting each of them at a time, and they do not form new

links.

The following conditions A.13 to A.16 are assumed to make compatible the conditions A.6

to A.12. If these conditions hold, then the network g is pairwise stable.

max{ψ2
A, 0} < c < min{γ2A, γ2B∗∗ , ∆Ad, ∆As, ∆B∗

d, ∆B∗∗
s, ∆B∗∗

d} (A.13)

where

ψ2
A =

∆Ad ∆̃As′ −∆Ad′ ∆̃As

∆Ad− ∆̃As−∆Ad′ + ∆̃As′

γ2k =
∆ks∆kd− ∆̃kd∆̃ks

∆ks+ ∆kd− ∆̃kd− ∆̃ks
, ∆ks∆kd > ∆̃kd∆̃ks ∀k ∈ {A, B∗∗}

The intensity of homophily for those individuals of type B who belong to group NB∗ satisfies:

λ̄B
∗
< min{∆B∗

d− c
∆B∗d

,
c− ∆̃B∗

d′

∆B∗s′ − ∆̃B∗d′
} (A.14)
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The intensity of homophily for the rest of individuals satisfies the next two conditions:

max{ c− ∆̃Ad

∆As− ∆̃Ad
,

∆Ad′ − c
∆Ad′ − ∆̃As′

0} < λA ≤ λ̄A <
∆Ad− c

∆Ad− ∆̃As
(A.15)

c− ∆̃B∗∗
d

∆B∗∗s− ∆̃B∗∗d
< λB

∗∗ ≤ λ̄B
∗∗
<

∆B∗∗
d− c

∆B∗∗d− ∆̃B∗∗s
(A.16)

Notice that condition A.13 assumes a similar condition to the condition A.4 in proposition

2, where the marginal benefits of linking for individuals of type A and B∗∗ are greater than their

associated costs.

The condition A.13 mens that the linking cost does not take extreme values. The condition

A.14 means that the intensity of homophily is relatively low for individuals of the groupNB∗ and

the conditions A.15 and A.16 means that the intensity of homophily for the rest of individuals

do not take extreme values.
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