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Abstract

Drawing from a dynamic principal-agent model characterized by a state variable given

by the agent’s initial bargaining power and by a law of motion that governs the changes of

their bargaining power, we introduce a fat tail distribution for the productivity possibilities

in order to study heterogeneity in CEO compensations by analysing firm and industry-level

characteristics. Through a numerical exercise, we find that the productivity possibilities

determine CEOs’ compensation size and distribution, but once this is determined, the bar-

gaining dynamics within the firm shape the evolution of this compensation. We also present

evidence that our model can describe to a good extent compensation behaviours observed

in data.

Resumen

Partiendo de un modelo dinámico de agente-principal caracterizado por una variable de

estado dada por el poder de negociación inicial del agente y por una ley de movimiento que

gobierna los cambios de su poder de negociación, introducimos una distribución de cola

ancha para las posibilidades de productividad con el fin de estudiar la heterogeneidad en las

compensaciones de los directores generales mediante el análisis de caracterı́sticas a nivel de

la empresa y la industria. A través de un ejercicio numérico, encontramos que las posibil-

idades de productividad determinan el tamaño y la distribución de la compensación de los

directores generales, pero una vez que esto está determinado, las dinámicas de negociación

dentro de la empresa determinan la evolución de esta compensación. También presentamos

evidencia de que nuestro modelo puede describir en buena medida los comportamientos de

compensación observados en los datos.
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1 Introduction

The size of the payments received by CEOs has been observed to be diverse amongst firms and

to change through time (Frydman and Jenter, 2010). Explanations about the heterogeneity in

CEO compensations amongst companies have relied on studying firm-level effects. Sur et al.

(2015), for instance, present a model that predicts that the cash salary for CEOs is mostly driven

by firm-specific factors, while Bouteska and Mefteh-Wali (2021) find that poor governance con-

ditions lead to high compensation levels offered to CEO in US companies trough time. On the

other hand, some studies have attributed this heterogeneity to industry-level factors, most com-

monly firm size (Gabaix and Landier, 2008, Edmans and Gabaix, 2009). However there is mixed

evidence as to what is the real role that firm and industry-level factors play on determining CEO

salary size and evolution. In this thesis, we aim to unite the two arguments by modeling the rela-

tionship between the company owners and its CEO accounting for bargaining power dynamics

within the company, and a fat-tail productivity distribution that captures the heterogeneity be-

tween firm sizes.

Table 1: Compensation Summary.

Variable Mean St. Dev.
1 EBIT 1045.47 3475.52
2 comp 41.12 176.62

Source: Own Elaboration with data from S&P.

Table 1 presents a brief summary of data from the S&P Global Market Intelligence Trial at

WRDS,1 which contains annual financial details from around 300 companies in the US ranging

from the year 1968 to 2014. The sample mean and standard deviation of the Earnings Before

Interests and Taxes (EBIT) and the present compensation of the CEO (comp) amongst these

companies are presented in this table. Notice that the average CEO earns $41.12 MM annually,

while the average EBIT amongst companies is of around $1045.47. So, in average the CEO

takes around 4% of the company’s earnings as pay. However, if we look at Figure 1 we can see

that a significant percentage of CEOs make more than 10% of the companies’ EBIT with some

1 We thank the people from WRDS at UPenn for letting us have access to this database. This database is not
available to the public.
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taking as much as 40%. This underlines the fact that there exists great heterogeneity among

CEO compensation packages in the form of a number CEOs receiving a significantly higher

pay, which could indicate higher ability to extract rent from shareholders (Murphy and Sandino,

2010) which implies a higher bargaining power for the CEO.

Figure 1: CEO compensation as a fraction of the company’s EBIT.

Source: Own Elaboration with data from S&P.

To model the bargaining power dynamics between the companies’ owners and its CEOs, we

review a dynamic principal-agent model first presented in Di Giannatale et al. (2021) and solve

it numerically using the Pareto family of probability distributions as the output distribution. In

this model, the agent (CEO) bargaining power is the state variable which constitutes a departure

from standard repeated principal-agent models, such as the one of Spear and Srivastava (1987).

Given that agent compensation depends directly of the firm’s output, using the Pareto distribu-

tions allows us to account for the fat tail behaviour in CEO compensation distribution observed

in the real world. Our results indicate that the output distribution plays an important role on

determining the level of risk and the size of the compensation that the CEO receives in the com-

pany. But once this size is determined, the bargaining power dynamics are the only factor that

influences the evolution of the relationship.
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We then validate our results using the aforementioned salary data from S&P where it is proved

that industry-level factors such as firm size or industry sector do determine in some degree CEO

salary. But heterogeneous salary trends arise within companies even with very similar character-

istics, implying that salary trends are determined only by firm-level factors such as governance

conditions. We also find that most CEOs in our sample take on a greater level of risk in the

contractual relationship, which is something that our model captures and contrast with the lower

levels of risk sharing predicted by classical principal-agent models.

The remaining of this work is organized as follows: In section 2, the related literature is

reviewed to further motivate the topic. In section 3 we present the model. Section 4 details the

numerical approach to the problem; first reviewing the Pareto family of probability distributions

and underline the parameters used in the numerical solution and then presenting the results. In

section 5 we use the S&P data and perform time series analysis on CEO salaries to later compare

them with simulated salaries using our model. Finally, section 6 concludes the thesis.
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2 Related Literature

The current work is related to the literature of dynamic contract theory and bargaining power

in principal-agent relationships. Specifically, we aim to expand on the ideas of Di Giannatale

et al. (2021) about the dynamics of the bargaining power in a long-term contractual relation-

ship between a firm shareholders and its CEO. The main contribution of this thesis is to analyze

the heterogeneity in CEO payments and their evolution among firms in the context of this model.

In the late 1970s, Hölmstrom (1979) presented a static model where a risk neutral principal

and a risk adverse agent have a contractual relation subject to moral hazard. His model finds that

when the agent’s effort is not observable, optimal contracts will be second-best due to the trade-

off between risk sharing and incentives. From this work, economists have followed studying

the relationships between a company’s shareholders (principal) and the CEO (agent) (Grossman

and Hart, 1983). The classic principal-agent models establish that because the shareholders of

a firm are unable to observe the effort exerted by the CEO there exists an inefficient allocation

of resources. In our setup, the actions taken by the agent are also unobservable by the principal

and we reach a similar situation, yet the allocation of resources changes overtime and is related

strongly with the agent bargaining power.

Dynamic principal-agent models build upon this literature by presenting a way of formally

studying long-term relationships between the principal and the agent, as in Spear and Srivastava

(1987), and Wang (1997). This relationship is usually analyzed by means of the maximization

of the shareholders’ discounted expected utility subject to two constraints. The first one is the

individual rationality constraint which ensures that the CEO will only accept the contract if it

grants him expected discounted utility higher than or equal to his reservation utility. The sec-

ond one is the incentive compatibility constraint which warrants that the CEO chooses a path of

optimal effort levels that corresponds to the effort path that the shareholders want to implement.

The optimal contract is achieved via two incentive devices: present and future compensation.

The trade-off between the shareholders’ utility and the CEO compensation that arises from
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the asymmetry of information within the firm and the structure of the dynamic principal-agent

model give us the opportunity to model it as a multi-objective optimization problem (Goldberg,

1989). With this approach, it is possible to model the level of bargaining power of both the agent

and the principal by means of giving certain levels of priority to their corresponding utility in

the objective function. Di Giannatale et al. (2021) treat the agent bargaining power as a state

variable for the problem and give it an explicit dynamics to follow. We borrow from their work

the same dynamics for the agent bargaining power.

Multi-objective optimization problems yield an infinite set of solutions given the lack of in-

formation about the relevance of one objective with respect to the others (Ehrgott, 2005), i.e. the

real value of the bargaining power. This set of optimal solutions is called Pareto Optimal Fron-

tier. Giving a closed-form solution to the Pareto Optimal Frontier has proven to be challenging

so a good strategy to gain insight on the form of the optimal solution, and equally important the

optimal set of present and future compensations, is to design and implement a computational

algorithm as in Wang (1997) and Clementi et al. (2010).

Finally, this work also relates to the empirical work of identifying the source of heterogeneity

in CEO compensation packages. While there exist real-world evidence of this heterogeneity, see

for example Tervio (2008), Gabaix and Landier (2008), the existing theory offers mixed results

when predicting CEOs compensations and efforts. For instance, Murphy and Sandino (2010)

find that CEOs have acquired a higher ability to extract rent from shareholders which they argue

could be a reason for this heterogeneity. However, Hölmstrom (2004) finds that there is growing

pressure to diminish executives’ power within firms, which makes the arguments made by Mur-

phy and Sandino (2010) difficult to believe. Another explanation, a little more widely accepted,

is that firm size is a determinant factor for the CEO compensation heterogeneity (Gabaix and

Landier, 2008, Edmans and Gabaix, 2016), arguing that bigger firms have higher willingness to

pay for managerial talent. Yet, Gayle and Miller (2009) find empirical evidence that links the

agency costs in the U.S. with exogenous growth in firm size while not being able to link this

growth with changes in managers’ risk preferences.
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Di Giannatale et al. (2021) find that the dynamics that the CEO’s bargaining power follows

could explain the difference in compensation for CEOs with even the same risk aversion param-

eter. This work follows the former article by combining the numerical and theoretical results of

our analysis to give a better understanding of the role that within and between company factors

play on determining the size and evolution of CEO compensations. Specifically, we focus on the

impact of using different distributions for the output distribution, namely the Pareto Distribution

which has been used to model income and wealth distributions (Zipf, 1949, Mandelbrot, 1960,

Arnold, 2014) and could potentially explain salary heterogeneity at industry level.
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3 The Model

In this section, we summarize the multi-objective dynamic principal-agent model proposed in

Di Giannatale et al. (2021).They propose a discrete-time model in which two individuals en-

gage in a contractual relationship from time t = 0 until infinity: a risk neutral principal and a

risk averse agent. Both seek to maximize their discounted expected utility and have a common

discount rate β ∈ (0,1).

The agent utility function, v(wt ,at), is assumed to be continuous, bounded, strictly increas-

ing with respect to wt and at . Furthermore, it is strictly concave with respect to wt , and strictly

decreasing and convex with respect to at . In this function, wt ≥ 0 represents the agent’s salary

which is paid at the end of every period, while at represents the agent’s effort choice made at

the beginning of every period. We assume at is drawn from a compact set A = [a,a], and it is

unobservable to the principal.

Every period t ≥ 1 certain output yt , obtained from the compact set Y , is produced and ob-

served by the principal and the agent. There is assumed to be an stochastic relationship between

the output realization and the agent’s effort choice which is given by the time-invariant distri-

bution F(yt | at) > 0 for all yt ∈ Y and for all at ∈ A. Di Giannatale et al. (2021) also assume

that this distribution has a density f and that the distribution of outputs is i.i.d. from period to

period, for a given action.

As in Di Giannatale et al. (2021), we assume that at the beginning of the principal-agent

relationship, at t = 0, the agent has a bargaining power given by δ0, where δ0 ∈ [0,1]; while

the principal has a bargaining power of (1− δ0). It is also assumed that the principal and the

agent had reached an agreement, at t = 0, about the law that governs the movement of the agent’s

bargaining power period by period, δt = z(δt−1,yt). So, the contract that defines the infinite rela-

tionship of the principal and the agent follows this timeline: At t = 1, given a value of δ0 ∈ [0,1],

the agent decides a1(δ0) ∈ A, at the end of the period output y1(δ0) = y1(a1(δ0)) is drawn from

the distribution F(y | a1(δ0)), and the agent receives a compensation w1(y1(δ0)). The principal
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receives y1(δ0)−w1(y1(δ0)), and the agent’s bargaining power for t = 2, δ1 = z(δ0,y1)∈ [0,1] is

defined by the agreed-upon law of motion. Now assume that the principal and the agent employ

history-dependent pure strategies and that the game is repeated from t = 2,3, ...

The former mentioned relationship ensures that at any time t there is a history of output

realizations ht = {(δs,ys+1(δs))}t−1
s=0; with h0 = δ0, such that ys+1(δs) ∈ Y and δs ∈ [0,1] for

all s = 1,2, . . . , t −1. The principal’s decision is wt(ht), and the agent’s decision is at(ht−1),

because the effort decision has to be made before yt has been realized and given the value of

δt(ht−1) at the beginning of the period. Let π(ht+τ ;ht ,at) be the probability distribution of ht+τ

conditional on ht and at . This distribution is recursively expressed in the following way:

dπ(ht+τ | ht ,at) = f (yt+τ | a(ht+τ−1))dπ(ht+τ−1 | ht ,at),

with

dπ(ht+1 | ht ,at) = f (yt+1 | a(ht)).

The value functions that the principal and the agent, respectively, derive from the sub-game

starting from ht are given by:

U(ht ,w,a) =
∞

∑
τ=0

β
τ

∫
Y

[
yt+τ −w(ht+τ)

]
dπ(ht+τ | ht ,a);

V (ht ,w,a) =
∞

∑
τ=0

β
τ

∫
Y

v(w(ht+τ),a(ht+τ−1))dπ(ht+τ | ht ,a).

Given sequences δt = {δt(ht−1)} and wt = {wt(ht)}, the sequence at = {at(ht−1)} is incen-

tive compatible at ht if:

V (ht ,w,a)≥V (ht ,w,a) =
∞

∑
τ=0

β
τ

∫
Y

v(wt(ht+τ),a(ht+τ−1))dπ(ht+τ ;ht ,a),

for any other sequence at = {at(ht−1)}, and π is the distribution in the future histories induced

by δt , yt , wt and at .
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A contract φ
δ0
t is defined by a history-dependent agent’s effort recommendation at(ht−1),

and a history-dependent agent’s compensation plan wt(ht). The agent’s history-dependent bar-

gaining power values δt+1(ht) are determined by the agreed-upon law of movement. That is, a

contract is given by:

φ
δ0
t =

{
at(ht−1),wt(ht)

}
.

We say that a contract φ
δ0
t is feasible if:

at(ht−1) ∈ A ∀ht−1 ∈ ([0,1]×Y )t−1, ∀t ≥ 1; (1)

0 ≤ wt(ht)≤ yt ∀ht ∈ ([0,1]×Y )t , ∀t ≥ 1; (2)

and also the agreed-upon law of motion of the agent’s bargaining power must hold:

δt+1(ht) = z(ht) ∈ [0,1] ∀ht ∈ ([0,1]×Y )t , ∀t ≥ 0. (3)

Condition (1) ensures that the agent’s efforts belong to the set of admissible effort values.

Condition (2) is the capacity restriction and requires the agent’s salary to be not greater than the

current output. Condition (3) requires that any value of the agent’s bargaining power is drawn

from the law of motion in the interval [0,1].

For any given δt , two conflicting objective functions are optimized: the ex-ante agent’s dis-

counted expected utility, and the ex-ante principal’s discounted expected utility, subject to in-

centive compatibility and feasibility. The solution to this maximization problem is not unique,

but a series of contracts that satisfy Pareto optimality. A contract φ
δ0
t is Pareto optimal if there

is no other feasible and incentive compatible contract ϕ
δ0
t such that (U(ht ,ϕδ0

t ),V (ht ,ϕδ0
t )) ⪰

(U(ht ,φ δ0
t ),V (ht ,φ δ0

t )), for all ht (Di Giannatale et al., 2021).

The dynamic problem is now transformed into a static variational one as in Spear and Srivas-

tava (1987). The continuation profile from time t + 1 onwards for contract φ δ
t at any t, where
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δ is the initial bargaining power of the agent, given ht , is determined by φ δ
t | ht . This implies a

continuation value from time t +1 onwards of U(φ δ
t | ht) for the principal, and of V (φ δ

t | ht) for

the agent.

A contract φ δ
t is temporary incentive compatible if, for all t and for all ht :

at(ht−1) ∈ argmax
a∈A

∫
Y
[v(wt(ht),a)+βV (φ δ

t | ht)] f (yt ;a)dyt . (4)

This constraint ensures that there will be no deviations in the optimal path of the agent’s effort

decisions, for any δt .

For every δ ∈ [0,1], define W (δ ) as the set of the principal’s and the agent’s discounted

expected utility values that are generated by contracts that are feasible, incentive compatible,

and characterized by the agent’s initial bargaining power given by δ and the agreed-upon law of

motion z, as follows:

W (δ ) = {(U(φ δ | h0),V (φ δ | h0)) | ∃ φ
δ s.t. (1),(2),(3), and (4)}.

Di Giannatale et al. (2021) prove that W (δ ) is compact for all δ and characterize the unique

series of Pareto optimal contracts in a Bellman equation. For all (U(δ ),V (δ )) ∈ W (δ ), the

Bellman Equation, yields:

Γ(U,V )(δ ) = max
w(δ ,y),V (δ ,y),U(δ ,y)

{U(δ ),V (δ )}

where:

U(δ ) =
∫

Y
[y−w(δ ,y)+βU(δ ,y)] f (y;a∗(δ ))dy,

V (δ ) =
∫

Y
[v(w(δ ,y),a∗(δ ))+βV (δ ,y)] f (y;a∗(δ ))dy.

Subject to

10



a∗(δ ) ∈ argmax
a(δ )∈A

∫
Y
[v(w(δ ,y),a(δ ))+βV (δ ,y)] f (y;a(δ ))dy; (5)

0 ≤ w(δ ,y)≤ y ∀ y ∈ Y ; (6)

δ
′ = z(δ ,y) ∈ [0,1]; (7)

(U(δ ,y),V (δ ,y)) ∈ W (δ ) ∀ y ∈ Y. (8)

where (5) is the incentive compatibility constraint; (6) indicates the agent’s temporary inabil-

ity to borrow; (7) guarantees that the future vale of the agent’s bargaining power belongs to

the interval [0,1], and (8) ensures that the principal’s and the agent’s future utility plans are

feasible. Di Giannatale et al. (2021) prove that (U∗(δ ),V ∗(δ )) is a fixed point of Γ, i.e.

(U∗(δ ),V ∗(δ )) = Γ(U∗,V ∗)(δ ), ∀δ ∈ [0,1].

The operator Γ satisfies Blackwell’s sufficient conditions for a contraction, and the contrac-

tion mapping theorem ensures that the fixed point (U∗(δ ),V ∗(δ )) is unique for all (U,V ) ∈

W (δ ). This means that along the resulting Pareto Frontier, PF∗, there exists only one pair if

maximal values of the principal’s and the agent’s discounted expected utilities, given a value of

δ , for all (U,V ) ∈ W (δ ); and vice-versa. Now, PF∗ must be non-increasing because otherwise

either the principal or the agent can achieve a higher level of discounted expected utility and the

other individual would be better off (Spear and Srivastava, 1987).

According to Hernández-Lerma and Romera (2004), this multi-objective dynamic optimiza-

tion problem admits the following Pareto Weights representation (PWR) with δ as the state

variable:

max
w(δ ,y)

[δV (δ )+(1−δ )U(δ )] (9)

subject to constraints (5), (6), (7), and (8). Notice that each objective function has a level of

priority associated; that is, δ is the priority assigned to the ex-ante agent’s discounted expected
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utility, and 1−δ is the priority assigned to the ex-ante principal’s discounted expected utility.

Di Giannatale et al. (2021) define an algorithm to numerically find the stationary point in the

Bellman equation in the case where the agent effort and the firm output are drawn from discrete

sets. The numerical characterization of the problem and the results drawn from the algorithm

allow a first approach to an empirical identification of the agent bargaining power dynamics

along the contractual periods. In the next sections, we expand on this idea by numerically

solving different parameterizations of the problem. Then, we use these results to propose a

more robust empirical model for the identification of the bargaining power dynamics.
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4 Numerical Approach

In this section, we present the computational strategy, which is similar to that in Di Giannatale

et al. (2021), to numerically approximate the optimal solutions of a parameterized version of the

multi-objective dynamic principal-agent model proposed in the previous section. First, we will

revise the Pareto Family of Probability Distributions. With this in mind, we specify the func-

tional forms and parameter values we use in our computational program, then we will present

the algorithms that outline our computational strategy, and finally we present the results for the

numerical exercises.

4.1 Generalized Pareto Family of Distributions

This subsection describes the Bounded Generalized Pareto Family of probability distributions

and the properties it has that make it suitable to our model. The Pareto distribution was first

introduced by Pareto (1964) as a way to model income and wealth distributions in European

countries. Pareto observed that in many populations the number of individuals in the population

whose income exceeded a given level x was well approximated by Cx−α , for some real numbers

C and α > 0. This approximation only worked for large values of x.

Despite criticisms, it became generally accepted that most income distributions did indeed

exhibit this type of tail behaviour, later called Paretian tail behavior (Arnold, 2014). Paretian

tail behavior ensures that the tail values of the distribution have a relatively large probability to

be observed, contrasting with classical distributions as the standard normal distribution. This

behaviour makes the Pareto Distribution suitable to model output distributions across firms.

Formally, we characterize a random variable X with a Pareto Distribution by its survival func-

tion as follows:

Definition 1 (Survival function) If X is a random variable with a Pareto Distribution then
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the probability that X is greater than some real number x, i.e. the survival function, is given by:

F(x) = Pr(X > x) =


(

σ

x

)α x ≥ σ

1 x < σ

where the scale parameter σ and the shape parameter α are strictly positive.

Definition 2 (Cumulative distribution function) The cumulative distribution function (CDF)

of a Pareto random variable with parameters σ and α is

FX(x) =

1−
(

σ

x

)α x ≥ σ

0 x < σ

Definition 3 (Probability density function) It follows by definition 2 that the probability

density function (PDF) is

fX(x) =


ασα

xα+1 x ≥ σ

0 x < σ

Figure 2 shows the the Pareto probability density function for parameter values σ = 1 and

α ∈ {0.5,1.0,1.5}, and the probability density function of a standard normal random variable.

We observe that for lower values of α the tail of the distribution becomes fatter in the sense

that higher values of X are more likely to be observed. This also illustrates the fact that the tail

values, i.e. the higher values, of the random variable have a significantly positive probability to

occur which is relatively higher to that in the standard normal pdf.

In order to use the Pareto distribution to model the firm output, y, we need to use a generalized

bounded version of this distribution first introduced in Pickands III (1975), which allows for the

random variable X to be drawn from a compact set. The probability density function of this

generalized bounded Pareto distribution is given by:
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Figure 2: Pareto PDF comparison, σ = 1.

Source: Own Elaboration.

fX(x;α) =
αLαx−α−1

1−
( L

H

)α ; (10)

where L(H) denotes the minimal (maximal) value for X , and α > 0 is the shape parameter. From

equation (10) we get that the cumulative distribution function of the bounded Pareto distribution

is given by:

FX(x;α) =
1−Lαx−α

1−
( L

H

)α . (11)

Figure 3 shows the probability and cumulative density functions of a bounded Pareto distribu-

tion with parameters L = 1,H = 3, and α ∈ {0.5,1.0,1.5}. The panel (a) of Figure 3 illustrates

that, similarly to the standard Pareto distribution, for lower values of α the probability of observ-

ing higher values of X increases. We use this fact to use α as the agent effort to solve the model

numerically. We do this by letting Y = {yL,yH} and PH(a) = P(y = yH |a) = F(x;a),PL(a) =

P(y = yL|a) = 1−PH(a) where x is the midpoint between L and H.

Notice that with this characterization the expected utility values for both the agent and the

principal become weighted sums instead of integrals in our maximization problem. We follow
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Figure 3: Bounded Pareto Distribution.

(a) Bounded PDF. (b) Bounded CDF.

Source: Own Elaboration.

Rogerson (1985) and use the first-order approach to solve this discrete version of the problem

subject to condition (5), which requires the agent’s effort to be incentive compatible. In order to

use this approach, the bounded Pareto distribution should fulfill two conditions. The first is to

satisfy the monotone likelihood-ratio condition (MLRC).

Definition 4 The functions {PL(a),PH(a)} are said to satisfy the MLRC if a ≤ a′ implies that

PL(a)/PL(a′)≥ PH(a)/PH(a′).

The MLRC implies that the observation of a higher level of output allows the statistical

inference that the agent worked harder in the sense of stochastic dominance, this also implies

that increases in effort cause output to increase in the same sense.

Proposition 1. {PL(a),PH(a)} as defined above satisfy the MLRC.2

The second condition that the probability functions need to satisfy is the convexity of the

distribution function condition (CDFC).

Definition 5 The functions {PL(a),PH(a)} satisfy the CDFC if P′′
L (a) and P′′

L (a)+P′′
H(a) are

non-negative.

2 The proof is in Appendix A.1.

16



By MLRC, the probability of a low outcome decreases as the agent works harder. The CDFC

requires that the function decreases at a decreasing rate.

Proposition 2. The functions {PL(a),PH(a)} satisfy the CDFC.3

Propositions 1 and 2 allow us to relax constraint 5 for the first order condition of the maxi-

mization program. With our current characterization of the problem, and assuming v(w(δ ,y),a(δ ))

is additively separable in the sense that v(w(δ ,y),a(δ )) = ν(w(δ ,y))− a(δ ), this condition is

given by

∂F(x;a(δ ))
∂a

[(
ν(w(δ ,yH))+βV (δ ,yH)

)
−
(
ν(w(δ ,yL))+βV (δ ,yL)

)]
−1 = 0. (12)

4.2 Functional Forms and Parameter Values

In this sub-section, we enlist a series of assumptions regarding functional forms and parameter

values we made with the purpose of implementing the computational strategy.

The principal’s utility function for one period consumption is given by: u(y,w(y,δ )) =

y−w(y,δ ). That of the agent is given by: v(w(y,δ ),a(δ )) = w1−h(y,δ )
1−h −a(δ ), where 0 < h < 1.

Notice that it is of the CRRA type with respect to current salary w, and that the coefficient of

relative risk aversion is given by h, where higher values of h imply higher degrees of relative risk

aversion. For the benchmark result, the value of h = 0.5. The agent and the principal discount

the future at a rate of β = 0.96.

The agent’s feasible effort choices are continuous and belong to the set A = [aL,aH ], where

aL = 0.1 is the lowest effort choice and aH = 1 is an upper bound for the agent effort. Also,

there are two levels of output: low (L) or high (H), described by the set Y = {yL,yH}. We take

yL = 0.4 and yH = 0.8 as the benchmark parameters. The probability functions that formalize

the stochastic relationship between effort and output are PH(a) and PL(a) as described in the

previous sub-section.

3 The proof is in Appendix A.2.
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We take the law of motion for the agent’s bargaining power from Di Giannatale et al. (2021)

as follows:

δ
′ = z(δ ,y) =

 min{1,δ + ε · y
yH
} i f y = yH ,

max{0,δ − ε · y
yH
} i f y = yL.

where ε is an arbitrarily small and positive number. This law of motion provides incentives in

the form of a greater next-period bargaining power if output yH is observed, and a punishment

in the opposite direction if output yL occurs at the current period. According to the authors,

the parameter ε can be seen as a measure of how closely future values of the CEO’s bargaining

power showcase rewards or punishments for good versus bad performances of the firm. We use

ε = 0.001 as a reference in our analysis.

4.3 Computational Algorithm

We now present the algorithm that outlines the computational program we designed to obtain

a numerical solution of (9).4 The process of finding this solution requires two steps. The first

step is to find the set of admissible values for our state variable i,e., finding the feasible agent

bargaining powers. We find the minimal admissible values of the state variable, δmin , and the

maximal admissible value of this variable, δmax, via the algorithm in table 2. Once the algorithm

finds these values, we discretize the set of admissible bargaining powers and start the second step

of the process. The algorithm in table 3 presents the recursive process of finding the stationary

solution of the Bellman equation for the Pareto Weights representation of our multi-objective

dynamic principal-agent model.

4.4 Numerical Results

In this subsection we present the main results of our numerical implementation. In order to

highlight the impact of taking into account both the bargaining power dynamics and the Pareto

distribution in our analysis, we compare the results with those of some benchmark models. The

first benchmark model is the standard dynamic principal-agent model (SDPA), the second refer-

4 For more details on the algorithm see the electronic appendix B.
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Table 2: Step 1 of the Algorithm to find the stationary solution.

Objective: Find the set [δmin,δmax] of feasible bargaining powers.

Initialization: Set δ = 0, Vt(δ ) = 0N , Ut(δ ) = 0N , ∆ = 0.005 and K = 1.
Step 1: Solve for (wh,wl) in (9), given δl = z(δ ,yl) and δh = z(δ ,yh) subject
to incentive constraint, save optimal utility values V ∗ and U∗.
Step 2: Set δ ′ = δ +∆.
Step 3: Solve for (wh,wl) in (9) given δ ′, save the corresponding optimal
utility values as V ∗∗ and U∗∗.
Step 4: If V ∗ ̸=V ∗∗ or U∗ ̸=U∗∗, set δmin = δ and go to step 5. Otherwise,
set δ = δ ′ and go to step 2.
Step 5 Set δ = 1
Step 6: Solve for (wh,wl) in (9) given δl = z(δ ,yl) and δh = z(δ ,yh) subject
to (12), save the corresponding optimal utility values as V ∗ and U∗.
Step 7: Set δ ′ = δ −∆.
Step 8: Solve for (wh,wl) in (9) given δ ′, save the corresponding optimal
utility values as V ∗∗ and U∗∗.
Step 9: If V ∗ ̸= V ∗∗ or U∗ ̸= U∗∗, set δmax = δ and stop. Otherwise, set
δ = δ ′ and go to step 7.

Source: Own Elaboration.

ence is the multi-objective static principal-agent model (MOSPA), finally the third reference is

the multi-objective dynamic principal-agent model with no dynamics for the agent’s bargaining

power (MODPA1).5 We refer to the model described in section 3 as (MODPA2).

4.5 Stationary Results

First, in Figure 4 we show a comparison between the Pareto frontiers of the benchmark models

and the model described in section 3.6 Panel (a) of Figure 4 shows that the Pareto frontier from

the SPDA, MOSPA, and MODPA1 models coincide. This depicts that first, in this case there is

no loss of efficiency when going from a static to a dynamic setting. And second, that solving

the multi-objective optimization problem (MODPA1) is in fact equivalent to solving the SSPA

model. In Panel (b) of Figure 4, we show that for a small value of ε , the Pareto frontier of our

5 See Appendix A.3 for more details about these models.
6 Reefer to Appendix B for the solution data.
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Table 3: Step 2 of the Algorithm to find the stationary solution.

Objective: Solve program (9) subject to constrains (6), (7), (8) and (12).
Given a set [δmin,δmax] of feasible bargaining powers.

Initialization: Set N = ((δmax −δmin)×2)/ε + 1, δ = δmin, Vt(δ ) = 0N ,
Ut(δ ) = 0N and K = 1.
Step 1: Solve for (wh,wl) in (9) given δl = z(δ ,yl) and δh = z(δ ,yh) subject
to (12), save the corresponding optimal value as S∗. Set Vt+1[K],Ut+1[K] as
the corresponding agent and principal expected utilities in S∗.
Step 2: If δ < δmax set δ ′ = z(δ ,yh), K′ = K+1 and go to step 1 using δ ′,K′.
If δ = δmax go to step 3.
Step 3: If Vt(δ ) = Vt+1(δ ) and Ut(δ ) = Ut+1(δ ), stop. Otherwise, set δ ′ =
δmin, K = 1 and go to step 1 using δ ′,K′.

Source: Own Elaboration.

model actually converges to that of the MODPA1. This is expected given that when ε → 0 in

the proposed law of motion, δ ′ → δ , i.e., the bargaining power will remain constant through the

contractual relationship as in MODPA1. All in all, Figure 4 serves as a way to show consistency

of the numerical solution of MODPA2.

Figure 4: Pareto Frontier: Model Comparison.

(a) Single objective and multi-objective approach. (b) Bargaining dynamics and no dynamics.

Source: Own Elaboration with data obtained via numeric algorithm.

Figure 5 shows the results from solving the MODPA2 program with an output distribution

drawn from a Pareto PDF and a more conventional output distribution: we draw from Wang

(1997) the output distribution on a discrete action choice model given by f (yH |aL) = f (yL|aH) =
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1/3, f (yH |aH) = f (yL|aL) = 2/3. The Pareto frontier shown in panel (a) of Figure 5 depicts a

loss of welfare when considering the Pareto distribution of outputs. Panel (b) also suggest a

lesser degree of insurance for the agent when considering the Pareto distribution of output. It

is also worth noting that considering a fat tail distribution implies higher probability of higher

outputs even when the agent exerts low effort. So, in our exercise when considering Wang’s

distribution of output, the agent exerts high effort (a = 0.2) optimally. But when considering the

Pareto distribution, the agent exerts low effort (a = 0.1). This implies a higher effort productiv-

ity when considering the Pareto distribution. All in all, results from Figure 5 can be interpreted

as follows: when facing higher probabilities of high output, the agent will be less inclined to

exert effort which in turns leads to a lesser degree of insurance and a loss of overall welfare.

Figure 5: Pareto PDF Effect on Results.

(a) MODPA2: Pareto frontier. (b) MODPA2: present compensations.

Source: Own Elaboration with data obtained via numeric algorithm.

Figures 6, 7, and 8 show results from comparative statics exercises with different values for

the parameters of the law of motion for the agent bargaining power and the probability density

function for the company output. The parameter ε takes values from 0.001 to 0.02 in our com-

parison, giving different degrees of movement to the agent bargaining power. We examine the

role of the Pareto distribution in our results by means of changing its shape, i.e, we expand the

upper bound, yH , of the distribution from 0.8 to 1.2 and to 1.6.

The results from panel (a) of Figure 6 show that there is a slight lost of welfare in the form
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Figure 6: Pareto Frontier: Parameter Comparison.

(a) Different Values for ε . (b) Different Pareto Shape Parameters.

Source: Own Elaboration with data obtained via numeric algorithm.

of Pareto-dominated solutions in the Pareto Frontier as ε increases. Notice how for the risk

adverse agent this loss of welfare is accompanied with lower levels of maximum expected util-

ity as greater ε values bring higher uncertainty about next period bargaining power, effectively

diminishing the expected utility for the agent. As the principal is risk neutral, his maximum ex-

pected utility stays relatively the same. In panel (b) of this Figure 6, we show that the possibility

of greater expected outputs as the Pareto PDF gets a fatter tail brings greater welfare for both

parties of the firm.

Figure 7: Agent’s Promised Bargaining Power: Parameter Comparison.

(a) Different Values for ε . (b) Different Pareto Shape Parameters.

Source: Own Elaboration with data obtained via numeric algorithm.

Figure 7 shows the changes in promised bargaining power for high and low output realiza-
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tions when the parameters of the model change. Notice that the relationship between current and

next period bargaining power is linear for both high and low output realization. The variations in

ε depicted in panel (a) have an impact in the distance between the agent’s promised bargaining

power results for high and low output realizations. As ε increases, the level of insurance that

the agent receives decreases, which is in line with the results shown in Figure 6. In panel (b)

we show that the variation in the shape of the output distribution does not affect next period

bargaining power results for high and low output realizations.

In Figure 8 we present the changes in agent compensation for both low and high output real-

izations for different parameters. In panel (a), as usual, we show the variations on the parameter

ε . We find that this parameter does not have an impact on present compensation, showing that

the dynamics of future bargaining power do not affect current salary for the CEO. Panel (b)

show the corresponding comparative statics when the output distribution varies. Notice that a

fattier distribution brings a higher spread between current salary in the case of a high and a low

output distribution, as shown in panel (c). It is also worth noticing that even in the case where

the lower bound for the distribution is fixed, lower salaries in the case of low output come with

fattier tail distributions.

Figure 8: Current Compensation: Parameter Comparison.

(a) Different Values for ε .
(b) Different Pareto Shape

Parameters.
(c) Spread of Compensations

in (b).

Source: Own Elaboration with data obtained via numeric algorithm.

From the results illustrated in Figures 7 and 8, we conclude that the initial value of the CEO’s

bargaining power and the value of ε in the law of motion determine the evolution of the optimal

contractual arrangements between the CEO and the shareholders. This is consistent with the

results found in Di Giannatale et al. (2021). Our results contribute with the observation that the
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shape of the output distribution dictates the level of present compensation for the CEO but does

not dictate the evolution of the contract.

4.6 Simulation Results

In this subsection we present the results from a series of Monte Carlo simulations of contractual

relationships. We aim to answer how does the shape parameter of the Pareto distribution and the

dynamics of the bargaining power affect the evolution of the relationship.

Table 4: Monte Carlo Estimations.

Conventional PDF Pareto PDF Different Means T-test
Variable Max δ Mean St. Dev. Max δ Mean St. Dev. P-Value
(1) Periods Until Max
Bargaining Power

0.42 560.08 33.46 0.395 500.92 42.45 < 1e−99

(2) Total Discounted
Compensation

0.42 16.41 0.67 0.395 15.65 0.71 < 1e−99

Source: Own Elaboration with data obtained via numeric simulations.

First, in the first row of Table 4 we show Monte Carlo estimations for the mean and standard

deviation of the expected number of contracting periods until the agent reaches for the first time

his maximum bargaining power in the contract.7 Notice that in columns 2 and 5, that the differ-

ence in output distribution implies changes in the maximum bargaining power for the agent. In

particular, the Pareto distribution implies a lower maximum bargaining power for the agent. The

third and fourth columns of table 4 show the estimations in the case of the conventional PDF,

while columns 6 and 7 show the estimations for the benchmark Pareto distribution. The p-value

of the T-test for difference in means of column 8, shows that the expected number of periods

until the agent reaches his maximum bargaining power is significantly lower when the output is

drawn from a Pareto distribution.

In row (2) of Table 4 we show similar estimations for the total discounted compensation

received by the agent in 100 contracting periods. Columns 4 and 7 show that the standard devia-

7 Estimations for Table 4 are based on 10,000 simulated optimal contracts. See appendix B for details.
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tion of this compensation is greater when considering the Pareto distribution, while the expected

compensation is lower with this distribution. This highlights the fact that using a fat tail distri-

bution does not necessarily imply higher expected salaries, but higher heterogeneity in salaries

across firms. The results from in Table 4 show a trade-off between bargaining power and present

compensation for the agent when he faces a fat tail distribution of the output given his effort.

He receives higher levels of bargaining power in a shorter period but he gets an overall lower

total compensation due to the lack of insurance in the optimal contract when facing the Pareto

distribution.

In order to further analyze the role of the bargaining dynamics when we consider the Pareto

distribution, we simulate 100 contacting periods when the agent starts with a bargaining power of

δ0 = 0.20; when the value of ε in the bargaining dynamics takes values from {0.02,0.01,0.005},

the low outcome is set to 0.4 and high outcomes possibilities are drawn from {0.8,1.2,1.6}.

Figure 9: Simulation: Agent’s Bargaining Power.

(a) yh = 0.8. (b) yh = 1.2. (c) yh = 1.6.

Source: Own Elaboration with data obtained via numeric simulation.

In Figure 9 we show the results of the agent’s bargaining power, which has a positive trend

with respect to the contractual periods. This positive trend is explained by the higher probability

of the higher output, given the optimal effort (a = 0.1). Effort productivity, meaning higher

probability of higher outcomes when exerting the same effort, also has a positive correlation

with bargaining power increments. The greater the parameter ε is, the faster the agent’s bargain-

ing power reaches its maximal value, i.e. the more variability between present and next period

bargaining power, the faster the CEO can reach higher levels of bargaining power if he performs

properly in the company.
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Figure 9 also shows that for all three sets of parameters for the high and low outputs there is

not a significant difference in the maximum bargaining power reached by the agent. So, a higher

probability of a higher output does not imply higher bargaining powers achievable by the CEO.

Figure 10: Simulation: Agent’s Compensation.

(a) yh = 0.8. (b) yh = 1.2. (c) yh = 1.6.

Source: Own Elaboration with data obtained via numeric simulation.

Finally, the simulation results regarding the agent’s salary are presented in Figure 10. We

observe that even for lower values of ε , there is a significant variability of salary with respect to

the contractual periods, contrasting with the results in Di Giannatale et al. (2021), where for low

values of ε there is a positive relationship between the agent’s salary and the contractual periods.

This is due to the lack of insurance provided to the agent in our results. We also observe that

the higher values of ε and/or yH , the faster the agent reaches higher values of bargaining power,

and the more variability there is in his salary. This variability also implies something similar to

Figure 9, higher (lower) salaries do not necessarily imply higher (lower) bargaining power for

the agent.

The simulation results add to the fact that the bargaining dynamics is the determinant factor

for the evolution of the contractual relationship, while the shape of the distribution determines

the level of risk that the CEO faces in the company and the value of his salary. All in all,

results from subsections 4.5 and 4.6 imply that industry-level qualities such as productivity

distribution play an important role on determining and shaping the distribution of CEO present

salaries. But once CEO salary distribution is determined, firm-level characteristics such as the

CEO bargaining power are the only responsible for the way that this salaries evolve.
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5 Empirical Evidence

In this section, we compare the trend and seasonal components of the time series of simulated

salaries presented in subsection 4.6 with observed CEO salaries. We use the Capital IQ’s Com-

pensation Detail database which contains compensation data from around 700 different CEOs

of companies based in the United States ranging from the years 2001 to 2018.8 We filtered the

CEOs with complete data from the years 2006 to 2018 and obtained a sub-sample of 32 CEOs

with 12 salary observations measured in constant US dollars of 2005.

Figure 11 shows the decomposition in trend, stationary, and random components from 6 par-

ticular CEO salary time series.9 The first plot in each subfigure shows the observed annual

salaries for the corresponding CEO, which we have normalized in order to maintain a constant

scale from 0 to 1. Three out of the six CEOs have salaries that have increased with time, namely

those of the CEOs from BancFist, Arcelor Mittal and Walt Disney. The CEOs from Hornbeck

Offshore Services and The AES Corporation are observed to have a decrease in salaries over

the years. Lastly, the salary of the CEO from Qurate Retal has been maintained in a constant

range. The growth or shrink tendency of these salaries is captured in the trend component of the

time series which is calculated using a simple moving average and is shown in the second row

of each subplot.

The seasonal component of the observed salaries is presented in the third row of the corre-

sponding subfigure. This seasonal component is a measure of the risk that the CEO faces in

the form of a difference between his expected salary based on the trend and his actual annual

salary. Notice that all the CEOs, no matter their salaries’ trend, increasing or decreasing, face

risk within their company with peak values of seasonal components ranging from −0.1 to 0.1.

The data from CEO compensations shows that salary trends are heterogeneous even amongst

companies with similar characteristics such as company size, age, or industry sector. This in-

dicates that such outside characteristics are not strong determinants for CEO compensation and

8 This database is not available to the public.
9 All 32 time series decomposition available in Appendix B.
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that we should instead focus on within firm characteristics, such as the CEO bargaining power,

when studying salary trends. On the other hand, CEO compensation size is shown to increase

with company size and productivity as predicted with the Pareto distribution in our model.

In Figure 12 we take the simulated salaries of an optimal contract based in our model with the

benchmark parameters for both the Pareto and the conventional distribution of output (ε = 0.01,

yL,yH = 0.4,0.8, δ0 = 0.20) and perform the same decomposition as with the observed salaries.

The trend component for both output distribution show that there is an expected growth in

salaries over time thanks to the bargaining power dynamics in the model. The salaries obtained

with the Pareto distribution of output show a greater seasonal component than the conventional

distribution, adding to the result of greater risk sharing in the company when accounting for the

fat tail distribution of output. In fact, the seasonal component in the salaries simulated using a

Pareto distribution is of the same magnitude than those observed in the real salaries. While that

of the salaries simulated with the conventional distribution is of lesser magnitude.

This results indicate that the predictions of the model using the bargaining power dynam-

ics and the Pareto distribution of output offer an explanation for the heterogeneity among CEO

present compensations and their different paths even between companies of similar characteris-

tics such as size, age, performance or industry sector.
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6 Conclusion

This thesis contributes to the study of the heterogeneity among CEO present salaries and grow-

ing salary trends by modeling firm and industry-level characteristics that have been observed to

determine CEO compensation size. We borrow from a multi-objective dynamic principal-agent

model with the CEO’s initial bargaining power as the state variable in order to model the gover-

nance dynamics of a company. We also introduce a fat-tail distribution in order to capture firm

productivity heterogeneity.

Our model manages to capture these three important aspects of CEO compensation: hetero-

geneity in value, trend, and level of risk in the company to a good degree. The results in our

numerical implementation imply that the form of the productivity distribution determines the

risk and compensation size that the CEO receives in the current period; but has no impact on

the evolution of his future bargaining power, and therefore, does not determine the evolution of

the contractual relation. On the other hand, the bargaining power dynamics and more specifi-

cally the level of reward and punishment imposed by the parameter ε does not play a role on

establishing current compensation levels, but has all the faculty to shape the relationship going

forward. The simulated contractual relationships using the optimal results in our model find that

the shape of the output distribution specifies the level of risk that the CEO faces in the company.

The heavier the tail of the distribution, the more variation between salaries which implies more

risk for the CEO.

Finally, this thesis might be challenged by the lack of robust data for the empirical study or

the parameter characterization in the numerical approach so the results should be understood

as a glance to what the part the managerial relations as well as the state of the world play on

determining the salary of the CEOs; and not as a tool to make any empirical inference about the

salary trends for any given CEO.
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A Appendix

A.1 Proof of Proposition 1

Proof. Let a,a′ ∈ R+ such that a ≤ a′. First, it is useful to show that PH(a) ≤ PH(a′), i.e.

P′
H(a)≥ 0 for all a ∈ R+.

In fact
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∂FX(x;a)
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The former inequalities imply
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From relation (13), we have P′
H(a) ≥ 0, thus PH(a) ≤ PH(a′). This in turn implies two in-

equalities, first

PH(a)/PH(a′)≤ 1 (14)

and second

1−PH(a′)≤ 1−PH(a) (15)

Relation (15) implies PL(a′)≤ PL(a), so

PL(a)/PL(a′)≥ 1 (16)

Finally, from inequalities (14) and (16) we get

PL(a)/PL(a′)≥ PH(a)/PH(a′)
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A.2 Proof of Proposition 2

Proof. First notice that PL(a)+PH(a) = 1 for all a ∈ R+, so P′′
L (a)+P′′

H(a) = 0.

Now, PL(a) = 1−Fx(x;a). So from the proof in Appendix A.1 we have

P′
L(a) =−∂FX(x;a)

∂a

=−

(L
x

)α log
( x

L

)(
1−
( L

H

)α
)
−
( L

H

)α log
(H

L

)(
1−
(L

x

)α
)

(
1−
( L

H

)α
)2 .

Then,

P′′
L (a) =−

[(L
x

)α log
(L

x

)
log
( x

L

)
−
(L

x

)α ( L
H

)α log
(L

x
L
H

)
log
( x

L

)](
1−
( L

H

)α
)2

(
1−
( L

H

)α
)4

−

[( L
H

)α log
( L

H

)
log
(H

L

)
−
( L

X

)α ( L
H

)α log
(L

x
L
H

)
log
(H

L

)](
1−
( L

H

)α
)2

(
1−
( L

H

)α
)4

+
2
(

1−
( L

H

)α
)( L

H

)α log
(H

L

)[(L
x

)α log
( x

L

)(
1−
( L

H

)α
)
−
( L

H

)α log
(H

L

)(
1−
(L

x

)α
)]

(
1−
( L

H

)α
)4

=

[(L
x

)α log2 ( x
L

)
−
( L

H

)α log2 (H
L

)](
1−
( L

H

)α
)2

(
1−
( L

H

)α
)4

+
log
( x

L
H
L

)( L
X

)α ( L
H

)α (log
(H

L

)
− log

( x
L

))(
1−
( L

H

)α
)2

(
1−
( L

H

)α
)4

+
2
(

1−
( L

H

)α
)( L

H

)α log
(H

L

)
(

1−
( L

H

)α
)2

(
∂FX(x;a)

∂a

)
.

The first term on the former equation is non-negative because
(L

x

)α log2 ( x
L

)
≥
( L

H

)α log2 (H
L

)
.

The second term of the equation is also non-negative because log
(H

L

)
− log

( x
L

)
≥ 0. Similarly,

the third term is positive given that ∂FX (x;a)
∂a ≥ 0. Thus, P′′

L (a) ≥ 0. Therefore, {PL(a),PH(a)}

satisfy the CDFC.
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A.3 Benchmark Models

We use three benchmark or reference models in our numerical implementation. Here we present

them:

A.3.1 The Standard Dynamic Principal-Agent Model (SDPA)

A first reference model is the standard dynamic principal-agent model. In particular, we adapt

the model of Wang (1997), which is a model formulated as the maximization of the expected dis-

counted utility of the principal subject to the participation constraint, the incentive compatibility

constraint, and feasibility constraints. The value function is the principal’s expected discounted

utility is given by:

U(V̂ ) = E[y−w(y,V̂ )+βU(y,V̂ )],

where y is the observed output, w(y,V̂ ) is the compensation given the observed output y and

β is the discount factor of the principal and the agent. The agent´s lifetime discounted expected

utility is given by :

V (V̂ ) = E[v(w(y,V̂ ),a(V̂ ))+βV (y,V̂ )],

where v(w(y,V̂ )) is the temporary utility function of the agent, and a ∈ A is the effort exerted

by the agent. In addition, V (y,V̂ ) is the agent future discounted utility, which is the promised

expected utility from tomorrow on. the model’s state variable, V̂ ∈ V, represent the agent’s

reservation utility. This is an important difference with respect to our multi-objective dynamic

models given that our models’ state variable is the agent’s initial bargaining power.

The dynamic maximization program is:

max
w(y,V̂ ),V (y,V̂ )

E[y−w(y,V̂ )+βU(y,V̂ )]
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subject to

a(V̂ ) ∈ argmaxa′ V̂ (a′,V̂ ),

V (V̂ ,a(V̂ )) = V̂ ,

a(V̂ ) ∈ A,

0 ≤ w(y,V̂ )≤ y for all y,

V (y,V̂ ) ∈ V for all y.

Let V (V̂ ) and U (V̂ ) be the set of feasible and incentive compatible expected discounted

utilities of the agent and principal, respectively. Wang (1997) demonstrates that U (V̂ ) is com-

pact. Therefore, by virtue of the Bellman equation, there exists a principal’s maximal expected

discounted utility that is feasible and incentive compatible.

A.3.2 The Multi-Objective Static Model (MOSPA)

A second reference model is the multi-objective static principal-agent model. In this setting, the

static contracting problem is to choose an action a ∈ A and a compensation scheme w(y,δ ) ∈

[0,y], ∀y ∈ Y , to maximize the Pareto Weights function of the expected utility of the principal

and that of the agent; that is:

max
a(δ ),w(y,δ )

[δv(w(y,δ ),a(δ ))+(1−δ )u(y,w(y,δ ))],

subject to

∫
Y

v(w(y,δ ),a(δ )) f (y;a)dy ≥
∫

Y
v(w(y,δ ),a′(δ )) f (y;a′(δ ))dy ∀a′(δ ) ∈ A,

0 ≤ w(y,δ )≤ y ∀y ∈ Y.

A.3.3 The Multi-Objective Dynamic Model With No Bargaining Power Dynamics (MODPA1)

A third reference model is the multi-objective dynamic principal-agent model with no dynam-

ics of bargaining power. In particular, we analyze the optimal contractual arrangements having

V



the agent’s bargaining power, δ , as the model’s state variable, but without the implications of

explicitly including a law of motion for δ . That is, in this version of the model we analyze the

maximization of the Pareto Weights function of the expected discounted utility of the princi-

pal and that of the agent, subject to the feasibility and incentive compatible constraints. This

problem is formulated as follows:

max
a(δ ),wδ (yδ ,W ),V δ

(yδ ,W ),Uδ
(yδ ,W )

[δV δ +(1−δ )Uδ ],

where:

U(δ ) =
∫

Y
[y−w(y,δ )+βU(y,δ )] f (y;a(δ ))dy,

V (δ ) =
∫

Y
[v(w(y,δ ),a(δ ))+βV (y,δ )] f (y;a(δ ))dy;

subject to

a(V ) ∈ argmax a′ V̂ (a′,V ),

0 ≤ w(y,δ )≤ y ∀y ∈ Y,

δ ∈ (0,1),

(U(y,δ ),V (y,δ )) ∈ W (δ ) ∀y ∈ Y.
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B Electronic appendix

Codes and further figures are provided in electronic form. Available at https://github.com/

genarobasulto/Tesis GBM.
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Figure 11: Decomposition of Observed Salary Time Series.

(a) BancFirst Corporation. (b) Qurate Retail, Inc.

(c) ArcelorMittal. (d) The Walt Disney Company.

(e) Hornbeck Offshore Services, Inc. (f) The AES Corporation.

Source: Own Elaboration with data from S&P.
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Figure 12: Decomposition of Simulated Salary Time Series.

(a) Pareto Distribution. (b) Conventional Distribution.

Source: Own Elaboration with data obtained via numeric simulation.
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