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Resume11 

Describimos un a]goritmo rapido para caluclar el histograma de m-distancias en que se 
basan los cstadisticos tipo BOS. El algoritmo gencraliza uno que implementa LeRaron, 
calculando el histograma para cualquier conjunto finito de distancias simultaneamente. 
Reordenando el calculo apropiadamente, el algoritmo utiliza menos memoria. Los dos 
algoritmos son comparados utilizando la implcmentaci6n de LeBaron's en lenguaje C para 
MSDOS y la nuestra en Delphi (Pascal para Windows). El algoritmo gcneralizado es mas 
rapido cuando se requieren mas de dos valores de epsilon (el parametro de distancia), y esta 
implementado para calcular 255 distancias utilizando aritmetica de enteros cortos .. 

Abstract 

We provide a fast algorilhm to calculate the m-dirnensional distance histogram on which 
BOS-type statistics are based. The algorithm generalizes a fast algorithm due to LeBaron 
by calculating the histogram for any finite set of distances simultaneously. By reordering 
the calculation appropriately, the algorithm also requires less memory. The two algorithms 
are compared using LcBaron's MSDOS implementation in C and our Delphi (Windows 
Pascal) program. The generalized algorithm is faster when more than one value of epsilon 
(the distance parameter) is required, and is set up to calculate up to 255 values using short 
integer arithmetic. 



Introduction 

The interest in statistics capable of detecting non-linear dynamics is now well estab­
lished in economics. Developing Grass berger and Procaccia 's (G&P) ( 1983) Correla­
tion Dimension (CD), Brock ( 1986a, 1986b ), Brock et al. (1996 ), defined the BDS 
statistic testing the IID null whose applications include testing for non-linearity in sto­
chastic processes. In contrast to these statistics, which calculate distances for all pairs 
of data points and which we call order 2 statistics, Mizrach ( 1991) dcfint!d the Simple 
Non-parametric Test (SNT), which only calculates distances from each data point to 
some fixed value such as the mean. These U-statistics involve much less calculation; 
we cal I them order 1 statistics and they can be applied for the same purposes. Combin­
ing the CD and BDS statistics Mayer (1995, 1996) defined the Correlation Dimension 
Ratio (CDR) (or Statistical Correlation Dimension), a statistic which tests the HD null, 
calculates dimensions greater than 1, and eliminates a downward bias present in the 
G&P and CD statistics. In further work, Mayer ( 1998) defines homogenized integral 
U-Statistics of orders 1 and 2, which use the same dimensional information that all of 
these statistics are based on. 

The purpose of this paper is to describe the algorithm by which this basic di­
mensional information of order 2, BOS-type statistics is calculated by Mayer (I 995, 
1996, l 998). LcBaron (1997) describes the algorithms used to calculate the BDS sta­
tistic in computer programs first written by W. D. Dechert for DOS-based computer 
programs and then in C by LeBaron (sec W D. Dechert's Web page for the code and 
more infonnation). The algorithm we present is a generalization which runs faster when 
the calculation is required for several values of c, simplifies to LeBaron's for a single 
value of e:, and uses less memory. However, we do not calculate the significance of the 
BDS and related statistics as it is obtained by approximating to the normal distribution, 
for two reasons. First, the approximation lo the normal distribution is not very good for 
the data sets usually used in economics. Second, the generalizations we work with have 
even more complicated expressions for this approximation, and demand even more cal­
culation. Instead, we use bootstrap methods which have been stated in Mayer ( 1995, 
1996, 1998). 

The algorithm is implemented in a Windows user-friendly computer program 
together with a series of generalizations of the BDS statistic and the Simple Non­
parametric Test ( for which confidence intervals are calculated by bootstrapping), which 
is available from the author upon request1

. 

The building block random variables 

The order 2 statistics mentioned above are defined on the basis of some basic random 
variables which we now define for time series. Let ZP, p = 1, ... , N be N copies 
of a multivariate random variable 7,, Define an m-history with lags of length T by 
z(m); = (z-;: z., r, ... , zi-(m-l}T). For this to be well defined we need the index i to he 

____ ., 
1 Any request should bt: directed to mayerfou(a)di~l.cide.mx. 
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in the set 
J(m,N) = {i: (m-1)-r+ 1 ::5 i :SN}. 

Now the set of m-histories is 
( 1) 

(2) H(Z,ni,N) = {(z(m)i: ·i E J(m.N)}. 

Let J 2 (Z, m) be the upper triangle of the Cartesian product, 

J2(m,N) = {(i,j) E J(m,N) x J(m,N): i < j}. (3) 

Let / be the indicator function, 

I(x ) = { l x :5 y, 
'y O :r, > y. (4) 

and write 
b~1(c:) = T( max lz,-(k-l)'T - Zj-(k-I)'TI ,c). (5) 

• J<,k:S:m 

Then the .. building block" random variable for BDS-type statistics is 

C(m,~-, N) = #(,J2(~ .. N)) L b;'.~/e:). (6) 
• (i,j)EJ2(m,N) 

This random variable can be used to define a whole family of statistics. The first ex­
ample was the BDS statistic 

BDS(c, N) = C(m,c 1 N) - C(l,.s, N)m. (7) 

This can be modified, for example, to the Ratio Statistic (RS statistic) 

RS(E. N) = C(m,c, 1V)/C(1.E, N)m (8) 

used by Mayer (1995, 1996). The (non-local) Correlation Dimension (CD) defined by 
Cirassberger Procaccia is given by the limit of 

ClJ(c, N) = lu(C(m,e, N))/lu(c). (9) 

as N -+ oc and c -+ 0. The (non-local) Correlation Dimension Ratio (CDR) studied 
hy Mayer (1995) is instead the limit of 

CDR(E, N) .,...- }n(C(m,E, N))/ [mlu(C(l,E, N))]. (10) 

In practice the GJJ and CDR statistics are calculated as regressions of C(m.c, N) in 
tenns of C(l ,t::, N) or ln(c:) for small values of c . These arc thus more complicated 
functions of the building block random variables. In Mayer (1998) we define homog­
enized integral U statistics. These first use a transformation of the data to the uni f01m 
or nom1al distribution and then calculate integrals with forms such as 

Ji (N)= { J(C(m,c, N), C(l,c:, N)'")dC(m 1c, N). ( 11) 
J C(m,E,N)E[a,bJ 

That work includes comparative Monte Carlo tests of these and also the respective order 
1 statistics calculated with the Windows program mentioned above. 

This paper limits its scope to presenting the algorithm for calculating the huilding 
block random variables for order 2, C(m 1c, N). Our interest in using many different 
values of e: simultaneously leads to an alternative algorithm (developed by Mayer in 
1991) which calculates C(m,e:, N) simultaneously for epsilon in a given discrete set. 

2 
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The algorithm 

To minimize the computational requirements in the calculation of C(m,E, N) the al­
gorithm is recursive in m, uses mainly short-integer arithmetic, and has low memory 
req uiremenls. 

The algmithm calculates the sums in the definitions of C(m,c. N) (equation 
[6]) for a given number of dimensions 1 S. m S. M and for a given set or c, S"' = 
{ck : k - O, ... , K}. Any monotonically increasing fomm]a for Pi could he used. In 
the actual program we use the sets 51< = { K~ 1 Emax : k = 0, ... , K} with .:cmax = 
0 max{lzi - zil : I ~ ·i f= j ~ N}, where 0 is chosen by the user. In the experiments 
reported below O-'-- l. Dy setting I< S. 255 the algorithm uses mainly short-integers. 

The sums in the definitions of C ( rn,E, N) range through the sets J2 ( Z, 1n). The 
algorithm covers this sets using a change of variables ( i, j) = ( i, i+d), with 2 S. d S. N, 
1 S. 'i S. N - d. The computer calculation uses loops in d, m, i, with 2 -::; d -:=; N, 
l ~ m. <: I'vf and ( m - 1 )T + 1 S. i S: N - d. 

For each {l, when ni ".'CC' 1 a vector v 1 = ( v I , ... , v ~ _ 1) is initialized setting integer 
entries 

-vl = { k ifc.1c-1 < l,:i - Zi+dl:::; Ek and k > 0 (ll) 
0 lz, z.;.+,ll $ co 

for 1 S: i S: N - d is formed. Now vf1 is calculated iteratively in m > I, setting for 
each i 

v~ = max:{v"." 1
,1/" •

1
} (m - l)r + 1 < ·i < N - d. (13) 

i i - i-r 1 - ~ 

This operation uses only small integers when K ~ 255, and in the computer 1J;" 1 1 

replaces vf, thus reducing memory requirements (the relevant part of the vector vm 

gels shorter). Observe that vf' = k iff 1:iri I ,i(Ek) = I and b0 ..... ici_ i) = 0. This follows 
inductively on m since it holds by construction for m = 1 and 

b:}t~(F.) = max [h0+d(c:),b~r,i-r+ic:)J • (14) 

As vt are calculated through the loops, the sums 

S(m,k)= L #({i:vf=k}) 

are formed for 1 :s; m :s; kl, 0 s; k s; K. By construction S ( rn, k) is the frequency 
distribution of them-dimensional distances lying in the interval (ck-i,ck], which can 
be written 

S(m, k)-"-- #( { (i, i + d) E J2(1, N): llz(rn)i+d - z(m)dl E (=k-1, =kl}), (16) 

where 11·11 is the maximum norm. Once the loops ind, i, m have run, C(m,£k, N) is 
found from the normalized cwnulative distribution, 

1 
C(m,Ek, N) = #(J?.(;,,-N)) L S(m, l). (17) 

' O:Sl:Sk 

Two features distinguish this algorithm from the one presented in LeBaron ( 1997). 
The first is that we calculate C ( m,E", N) for a set of values of E simultaneously. The 
algorithms are equivalent for K = 0, in which case the operation in equation ( 13) can 
be considered to be logical instead of "arithmetic"' (it is actually an if operation using 

3 



A generalized fast algorithm for BUS-type Statistics 

small integers). The second is that we reduce the memory requirements by calculating 
along diagonals. This feature could also be included in LeBaron's case K = 0. Some­
thing which we do not include is the sorting used by LeBaron beforn initiali:Ling v 1 (sec 
equation [ 12]), which serves the purpose of limiting the calculations to data points in 
an interval of values given by c:, because usually we arc intcrcs1cd in the full range of 
values. 

Experime11tal comparison of the two implementations 

The comparison we make between the C language implementation of the algorithm 
described in LeBaron (1997) (available from Decherfs web page) and our own is not 
direct because the first uses sorting, while the program wc use (in Delphi) docs not, 
and besides carries some Windows overhead. (The calculation proceeds as a separate 
process [launching a thread} and there is a window showing the advance of the calcula­
tion. Ry the way, N is only limited by machine size and operating speed). We applied 
both algorithms to a uniform distribution on [O, 1]. LcBaron's algorithm was calculated 
for c = 1/2 and E. = 1. Although this last value is not usua11y of interest in applications, 
here it has the effect of overriding the advantages of the sorting. The results are shown 
in Table 1.2 

As expected, a single calculation is somewhat faster in LeBaron's implemen­
tation for large N, when sorting is disabled by choosing E = l. The run-time of our 
Windows program, which is almost independent of the number of values of£ used (up to 
255) takes less than 2 LeBaron calculations, exceeding the length of a single calculation 
by approximately 40%. When sorting is useful, as for£ = 1/2, LeBaron's calculation 
is speeded by a factor of 6 to 9 times in these examples, so that our run time is still faster 
if the calculation is required for as many values of£. LeBaron's implementation does 
not appear faster for£ = 1 and N = 1000, since sorting still takes place, although it is 
not useful. 

Conclusion 

]able I. Comparison of the times for the 
calculation of C(32, c:, N) (seconds) 

-------·-··------

Algorithm and values of E: N = 7500 N = 1000 
LeBaron, E = 1/2 9.3 0.16 
LeBaron, c = 1 61.4 1.05 
Mayer, E E S w 83 0.95 
Mayer, E E S'255 86 1.05 

We provide a fast algorithm to calculate BDS-type statistics which generalizes the one 
presented by LeBaron ( 1997) by calculating the basic m-dimensional histogram c: (m ,E. N) 

2 The calculations were carried out in a Pentium 333Mhz, 128Mb Ram. 
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for any finite set of values of E simultaneously. By reordering the calculation appro­
priately, the algorithm also requires less memory. The algorithm is in principle slightly 
slower for calculating C(m,E, N) for one value of E, because it replaces some binary 
operations with short-integer 'if's, but it is faster when more values of F: are used. These 
results are confirmed when LeBaron's MSDOS implementation of his algorithm in C is 
compared to our implementation of the generalized algorithm in Delphi, when sorting 
in LeBaron's implementation is disabled. When sorting is useful, LeBaron's program 
runs faster, but does not catch up with the generalized algorithm if the calculation is 
required for enough values of F:. 
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