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Resumen 

Presentamos un algoritrno rapido para calcular el histograma de distancias C(m, s) en el que 
se basan los estadisticos de tipo BOS, que se apoya en cl ordenamiento de los datos. El 
algoritmu calcula el histograma simultaneamente para conjuntos de valorcs de my f:, como 
el algoritmo rapido generalizado de Mayer (2000) sin perder mucha velocidad. Cuando el 
conjunto de valorcs de £ se limita a valores pcqueiios, el algoritmo es de ordcn N. 
Jmplemcntamos tarnbien el algoritmo de cajas de ordcn N de Grassbcrger ( 1990), 
incluyendo los casos m = l yr> I. Utilizando conidas cxperimentales encontramos que cl 
algoritmo basado en el ordenamiento rebac;a en un orden de magnilud al de cajas cuando N 
toma valores en los cicntos de miles. 

Abstract 

We present a sorting-assisted fast algorithm to calculate the distance histogram C(m, s) on 
which BOS-type statistics are based. The algorithm calculates C(m, s) for sets of values of 
m and t: simultaneously, as in Mayer's (2000) generalized fast algorithm, without loosing 
much speed. When the c set has a small bound, the algorithm is order N. We also 
implement Grassberger's (1990) order N box-assisted algorithm including the cases m = 1 
and r > 1. In experimental runs we find that the sorting-assisted overtakes the box-assisted 
algorithm by an order of magnitude for values of Nin the hundred thousands. 



lntrotluction 

Achieving a fast calculation of Grass berger and Procaccia 's ( G& P) (1983) Correla ti on 
Dimension and related BOS-type statistics (Brock 1986a, 1986b; Drock et al. 1996; 
Mayer, 1995, 1996, 1998) promises to be useful in several areas, such as electronic 
experiments, EEG observations (Theiler, 1995), the analysis of seismic data, financial 
time series, etc. It has thus received the attention of several authors. Working to cal­
culate the basic distance histogram C(m,s, N) (sec the definition below) for small val­
ues of epsilon, Theiler ( 1987) and then Grassberger ( 1990) use box-assisted algorithms 
which improve on other techniques involving k-dimensional trees (Bingham, 1989), 
obtaining order-N algorithms. Working instead with less data to calculate the ful) his­
togram, as demanded by interest in economic time series, LeBaron ( 1997) introduces a 
fast algorithm including Theiler's (1990) suggestion to first sort the data. Mayer (2000) 
generalizes this algorithm to calculate the histogram for many dimensions simultane­
ously, but without using sorting. In this paper we introduce sorting and use some of 
the principles of the generalized fast algorithm to obtain a calculation of order N when 
C(m,E, N) is required for only small values of epsilon .. We compare the perfonnance 
of this algorithm with a somewhat extended implementation of Grassberger's (1990) 
box-assisted algorithm, which obtains C ( m,c, N) for al 1 dimensions simultaneously, 
including m, = 1, and allows,> 1 (see below). 

These last three algorithms are implemented in a Windows user-friendly com­
puter program together with a series of generalizations of the BDS statistic and the Sim­
ple Non-parametric Test (Mizrach, 1991 ), for which confidence intervals are calculated 
by bootstrapping. The program is available from the author upon request1. 

The paper is organized as follows. In section 2 we write down the basic de­
finitions .. In section 3 we describe the algorithm. ln section 4 we describe our im­
plementation of Grassberger's ( 1990) box-assisted algorithm. ht section 5 we present 
the experimental results comparing the performance of these two algorithms and the 
generalized fast algorithm (Mayer, 2000). In section 6 we make some final remarks. 

The building block random variables 

The order 2 statistics mentioned above are defined on the basis of some basic random 
variables which we now define for time series. Let 7,P, p = 1, ... , N be N copies of a 
multivariate random variable Z E IR111

• Define an m-history with lags of length T by 
z(m); = (zi, Zi-r, ••• , zi-(m-l)r)- For this to be well defined we need the index i to be 
in the set 

J(m,N) ~ {i: (m - 1)-r + 1 :$ i _:SN}. 
Now the set of m-histories is 

H(Z,m,N) = {(z(m)i: ·i E J(m,N)}. 

(2. 1) 

(2.2) 

1 Any request should be directed to mayerfou@.disl.cide.mx. The progrnm can be downloadcu 
at http:/ /www.cide.cd11/i11vestigadores/Da"id _ IWHomcPage.htm. 
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Let J'l·(Z, m) be the upper triangle of the Cartesian product, 

J 2 (m, N) = {(i, j) E J(m, N) x .J(m, N) : i < j}. (2.3) 

Let I be the indicator function, 

/( ) . X ...=:: y, 
{ 

·1 ,c 

X,Y -"- 0 X > JI. (2.4) 

Write llz(m)i - z(m)1II = max19~m izi-(k-1)-r - z1. (k 

nonn and let 
l)Tj for the maximum 

b~(t:) = I( llz(m)i - z(m.)111,c:). (2.5) 
Then the "building block" random variable for BOS-type statistics is 

C(m,c:,N) = #(J2(~n,N)) L b;'.1(c). (2.6) 
(i,j)~J2(m,N) 

This random variable can be used to define a whole family of statistics. The first ex­
ample was the BOS statistic 

BDS(c:, N) = C(m,c:, N) - C(l,.s, N)m. (2.7) 

This can be modified, for example, to the Ratio Statistic (RS statistic) 

HS(c, N) = C(m,E:, N)/C(l,c:, N)m (2.8) 

used by Mayer (1995, 1996). The (non-local) Correlation Dimension (CD) defined by 
Grassberger Procaccia is given by the limit of 

CD(e, N) = ln(C(m,c, N))/ln(c:). (2.9) 

as N --+ oo and c ---t 0. The (non-local) Correlation Dimension Ratio (CDR) studied 
by Mayer (1995) is instead the limit of 

CDR(c:, N) = ln(C(m 1t':, N))/ [mln(C(l,t:, N))]. (2.10) 

In practice the GP and CDR statistics are calculated as regressions of C(m,c:, N) in 
terms of C(l,e, N) or ln(e) for small values of e:. In Mayer (1998) we define a whole 
series of other statistics based on these building block random variables. 

The algorithm using sorting 

The order N sorting-assisted fast algorithm we shall describe calculates C(m,c, 1V) 
simultaneously for 

(m,E) E {1, ... , M} X {c:1, ... , cK }, (I) 
where e1 < ... < E:K = cwwv The value £max is chosen to be relatively small, so that 
the number of neighboring pairs of Z-realizati ons satisfying I zi - Zj I s; c: ma." is of order 
N. In the actual application we choose K ~ 2542 so that most calculations are carried 
out with short integer arithmetic. 

1o give a simple explanation of the algorithm and to prove its properties we first 
introduce an equi valence cl ass structure on the set of cmax-neighboring pairs ( zi, z J). 

2 \\e use K = 254 instead of 255 because t11is saves on the application of some if statements in 
the main algorithms. 
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We refer to this set by defining the set of ordered pairs of indices 

J£m,.JN) = {(-i.,j) C J(l,N) X J(l,N): i < .i and lzi-Zjj :s; Emax}- (2) 

We shall say that two such ordered pairs ('i1, .ii), (i2, j 2 ) E J€ 111 _, .. (N) index contiguou.f 
ordered pairs (zi., z_11 ), (zi2 , z12 ) if i 1 - i 2 = j 1 - j 2 = crT, where er is 1 or -1. This 
means that if we take any two mahistories z( m )i, z( m) j containing the pairs z11 , zi2, 
and Zj,, Zj~ in the same positions, the pairs will be next to each other, and that when the 
maximum norm llz(m)i - z(m)ill is formed the contribution of these pairs is less than 
Erm.,.. We now define an equivalence relation~ on Jemax (.N) whose equivalence classes 
are the maximal chains of contiguous neighboring pairs. Define 

( i, j) ~ ( i', j') if and only if one of Lhe following holds: 

I) (i,j) = (i',j'). 
2) There exists a sequence (ik, jk), k = 0, ... , n of elements of .JcmA• ( N) such that 

(i,j) = (i0 ,jo), (-i',j') = (in:Jn) and (ik-I,Jk-d, (ik,.h), index contiguous ordered 
pairs for k = 1, ... , J{. 

The relation ~ is reflexive by construction, and it is clearly symmetric and tran­
sitive, so it is an equivalence relation. It is clear that the equivalence classes are sets of 
indices in maximal chains of contiguity .. Each equivalence class is of the form 

E = {(i,j), (i ··- -r, j - -,), ... , (i - (in - 1)-r, j - (r:n- 1)-r)} (3) 

and satisfies i < _j, (i - (m - 1)-r,j - (m - 1)-r) E .J"max(N) form = l, ... , ih, 
and (i + -r,j + r), (i - -fn:r,j - 1'n-r) ¢ J/Smax(N). It is also clear that if two m­
histories z(m)s, z(m)t satisfy ]jz(m)11 - z(m)tl I ~ €max then the sequence of pairs 
{(s, t), (s - -r, t - -r), ... , (s - (m - 1 )r, t - (m, - 1)-r)} indexing the differences taken 
in the calculation of the maximum norm I lz( m) s - z(m )ti I is a subset of one of the 
equivalence classes E of~-

We now explain the construction of the order N sorting-assisted fast algorithm. 
Essentially, the algorithm proceeds in two steps. The first is to identify the equivalence 
classes E of~. To do this we use sorting to obtain an order N calculation. The second 
is to calculate the contribution of each equivalence class R to C( m:t:1,,: N) for 1 ::; m :s; 
Af, 1 .:5: k :$ K. To do this we follow ideas contained in Mayer's (2000) generalized 
fast algorithm. 

Tdentifying the equivalence classes E 

The first step of the algorithm is to sort the sequence zf, ... , z,l,. Here the upper 
index represents the first entry of vectors z E .11:tw_3 We obtain indices i(l), ... , i(N) for 
which zf(i) :S: ... ::; zl(N)· We write i(n) and n(i) for the corresponding bijection and 
its inverse. 

3 Of course, any other entiy could be chosen. 
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The second step of the algorithm is to find 

Q(p) = max{ q 2 1 : zi
1
(p I q) - zi,(,p) ::-; Em=}­

Q = max { Q (p) : 1 S p :S N -- 1 } . 
(4) 
(5) 

We assume that Emax is not so small that Q does not exist, and that as N becomes large 
emax is chosen sufficiently small for Q to be bounded. 4 Thus the search carried out to 
find q is of order JV. Note that since the sequence {,;:i} has been sorted, 

Q (p + l) ~ Q (p) - 1 ( 6) 
• 1 1 1 I Th" b k • smce zi(vf Q(p)) - zi(p 11) S zi(p I Q(p)) - zi(p) <; .-Smax· ,scan eta en into account to 

shorten the calculation of Q. 
Introduce the notation 

[i,j] = (min{i,j},max{i,.i}). (7) 

The next step is to initialize an (N - 1) x Q matrix 1' = [7;,q] at zero. The 
matrix will mark with a 1 those pairs of indexes [i(p), i(p + q)] of neighboring pairs of 
Z-realizations whose maximal equivalence class F, has already been found. 5 

Now comes the main iterative procedure. For p = l to N - l and q = l to 
Q(y), we do the following. If ½,q = 1, go to the next (p, q). Otherwise, firsl deter­
mine if [i(p),-i(p + q)] E Jem~,.(N).6 If the condition is met, find the maximal E to 
which [i(p), i(p + q)] belongs. Now mark all those entries Tr/q' of the table for which 
[i(p'), 'i(p + q')] is in H, by setting Tp'q' = 1, so that each equivalence class E is cal­
culated only once. More precisely, using the notation for E in (3), form = 1, ... , in we 
define 

p(m) = rnin{n(i - (m ···· l)r),n(j- (m- l)T)} (8) 

q(m) = max{n(i - (m - 1)7), n(j - (m - l)r)} - p(m.), (9) 

and set Tp(m)q(m) = 1. 
Since by this procedure each equivalence class Eis identified exactly once, the 

number of times each distance jzi - z_.; I is calculated is also reduced to one. Once 
each equivalence class 1:) has been identified, its contribution to C(m,c, N) for each 
( m,c) E { 1, ... , A,f} x { F. 1, ... , s K} is calculated as described below. 

Contribution to C(m,E:, N) qf each equivalence class t.,' 

First, there is a simple case which is worth mentioning. If K = l and only 
C(m,£m.a:x, N) is to be calculated, the contribution of each equivalence class H to 
C(m,ema.x, N) is rn + 1 - m for 1 :5 m S m, where we use the notation in (3). 
Othetwise a more elaborate calculation, adapted from Mayer (2000) is needed, which 

4 This is an assumption which also implies that Grassberger's (1990) box-assisted algorithm is of 
order N. 

5 The implementation uses a vector containing '.l pq for 1 ~ q ~ Q(p) only (and I ~ 1> $ N - 1) 
so as lo save memory space. 

6 In 11,e case 111 = la sufficient condition is q ~ Q(p). In the general case, Q(p) need nol be kepi 
in memory ifz,\1,~q) - zf(p) ~ -Emnx islcsled foragain. 
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we now describe. 
For rn = I set vector vat v 1 = (1,f, ... , ·di), where 

v.! -=- { k if ~-k-1 < ~i=(s-l)r - Zj-(s-l)rl $ €A: and k > 0 {IO) 
0 lzi-(s-1)T NJ-(s-l)rl s €0 

for 1 s s s ih. ¼ctor v consists of short integers if J{ :s 255 and the maximum 
length it can take is N - 1. This is the only memory space needed for this part of the 
calculation. In practice, the initial vc,ctor v 1 may be calculated at the same time that 
each maximal chain of contiguity F, is being determined. 

Next, vm is calculated iteratively for 1 < m s m, by setting 
Yn { m -1 m-1} 1 < < - + 1 ( 11) v., = max V8 , vs+l , _ s _ 1n - ·1n. 

This is a short integer calculation when K :s 254, and in the computer v:n+I replaces 
v~ (the relevant part of the vector vm gets shorter). Observe that by construction 

v:n = k ~ ~k-l < llz(m)i (.- l)T - z(m)i <~-l)TII::; E:k 

This follows inductively on m since it holds by construction form = 1 and 

llz(m + l)i-(R-l)T - z(m + l)j-(11-l)TII (12) 

= max [llz(m)i-(11-1)-r - z(m)1-(s-l)-rll, I lz(m)i-s-r - z(m)j_sTII] . (13) 

As each 1.1:
1 is obtained for each s = 1 to ih+ 1-m and for each E, the number of times 

a distance index k has been obtained for each mis updated, adding one to a computer 
variable, so that by the time the algorithm has run for all Ethe sum 

S(m,,k) = L#({s: v:'• = k}) (14) 
E 

has been fonned. 
Observe that mis bounded by Q + 1. Thus the number of operations canied out 

for each E, which is of order rh2, is bounded uniformly in N. 
Write 

,_f2 (m, N) = {(i, j) E J(m, N) x J(m, N) : i < j}. (15) 

By construction S(m, k) is the frequency distribution of them-dimensional distances 
lying in the interval (c:k-1 1 i::AJ, which can be written 

8(m,k) = #({(i,j) E J2(m,N): llz(m)i- z(m)ill E (ck-1,ck]}). (16) 

C(m,Ek, N) is found from the normalized cumulative distribution, 
1 

C(m,~k,N) = #(J2(m N)) L S(m,l). 
' o.c;1.c;k 

Summary of the properties of the algorithm 

The main advantages of the algorithm we have described are the following. 

I) The algorithm uses a number of operations of order N. 

(17) 

2) The algorithm calculates each maximum nonn lzi - z_.;I intervening in the 

s 
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maximum norms I lz(m)i z(rn)jll only once. 
3) Much of the calculation, including the extension to dimensions m > 1, is 

carried out with short integer arithmetic when K s-; 255. 
4) An even shorter calculation is available in the case J{ = 1. 

A disadvantage of the algorithm is that it needs to establish the dimensions of 
the table T before the main calculation. This requires the calculation of the differences 
zf(p+q) - zfcp)· However, the number of calculations this involves is less than those in 
2) because of property (6) above. 

Implem£ntation of the box-assisted fast algorithm 

We now describe our implementation of Grassberger's (1990) optimized box-assisted 
algorithm. We shalt calculate C(m,€, N) simultaneously for the same set of values of 
(m,c) as before (see [I] above). Our implementation uses a two-dimensional grid of 
square boxes, extends the algorithm to the cases T > 1 (see the definition of the m­
histories z(m)i), and includes the calculation of C(l,c, N), which in principle would 
only need a one-dimensional grid of boxes. 

For the description of our implementation, let us suppose that zi is normalized so 
that O ~ Zi ~ 1.7 The idea is to subdivide the region [0, 1] x [O, 1] of the plane (zl, zl-r) 
into a grid of square boxes so that when we check whether I (zi, zi-T) - (zJ, ZJ-r) I ::; 
€max we only do so for those pairs (i,j) for which j(zf,z;_r) - (zJ,zJ_r)I S 2 11mx· 

Recall that the superindex refers to the first coordinate of the multivariate z (any other 
given coordinate could bem~ed). In contrast with Grassberger (1990), in our implemen­
tation T intervenes in the second coordinate, in a manner consistent with the definition 
of them-histories z(m.).;. The optimal length of the side of each box is bounded below 
by -=max• For this size of grid we need only check those pairs (z], z]-r) which lie in 
boxe1) adjacent to the box containing (zl, zf_r). If the boxes get smaller the algorithm 
becomes longer because the number of relevant boxes which need to be searched in­
creases. If the boxes get bigger more pairs in the adjacent boxes may be checked than 
is necessary, but the array of boxes will be smaller so the length of the calcualtion may 
be reduced. 

We assign to each pair (zl, zLr) the box (pi, qi) given by ( v( i), v( i - T)) where 
forl~i~N 

{ 

k if i S Mand k - 1 < zi/nhox. ~ k, with k ~ 1 
v(i) = 1 ifi ~ .M andzi = 0(anon-genericcase) 

0 if i < 1 (so that zi does not exist) 

Here nbox is the number of boxes on each axis, which we define as follows: 

n1,ox = min{Trunc(l/~max),g(N), fibox.}-

(18) 

7 \\e thus use bounds on z rather than work with a torus as in Gmssberger ( 1990). This speeds 
lhc algorithm except for the calculation of the bounds themselves, which, however, are also used in the 
program for other purposes. 
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The bound nbox = Tnmc,(1 /.sm.rlx) corresponds to the box size Ema.x• nbox is kept smaller 
than some maximum size fi~ox determined by memory requirements. Tt is also kept 
smaller than some g(N). Grassberger (1990) recommends y(N) = ../R, which is what 
we use. The length of the calculation is quite sensitive to the choice of nbox· Note 
al so that the calculation of C ( 1, €: N) is of order Ny(JV). This concerns us in the case 
when N is relatively small, when the calculation may be repeated many times in the 
application of lhe reshuft1ing test. In practice we used nbox equal to 1000 or 8000. This 
implies that the grid requires 10r. or 64 x lO" slots of memory each holding a long 
integer. The case .i > 1 in (18) occurs if i - T < 1, and must be considered for the 
calculation of C(l, .s, N). 

The algorithm now proceeds as follows to form the sums S(m., k) defined in 
equation (14). For each i from 1 to N we examine all previously considered j < i for 
which the first box coordinates are adjacent, so IPi - Pil ::; 1, and add l to S(l, k) 
if E.k 1 < lzi - zil s Ek· No other boxes need be considered for the calculation of 
C(l, c, N) since IPi - Pil > 1 implies lzl - z]I > Ema.x and therefore jz., - zij > Ema.x· 
Next, for those pairs for which the condition jzi - zil ::; Ema." held and for which also 
the second box coordinate is adjacent, so jq1 - q,.I ::; 1, we determine sequentially for 
2 :::; m S l\,f whether lzi-(m-1)-r - Zj+(m-1)-rl :s; Ema.x, in which case we add 1 to 
8(m, k) if llz(m)i - z(m):il 1, which has been updated recursively at the same time by 
maximizing the sequence of norms, lies in ( ck-1, ck]. This sequential calculation stops 
withthefirstmforwhich jzi (m-l)r-Zj+(m-lJ-rl exceeds€max· Finally, an entry is made 
in box (pi, q.i) recording that i belongs to it, following the listing method described by 
Grassberger (1990). 

Experimental results 

Figures 1 to 4 are logarithmic plots of the program run times when m takes the values 
{ 1, ... , 32} or { 1, 2}, and when c takes the values { 0250 , 

2
~5•0 , ... , E-max} or 

{ "'s"y' 2
•~ax ... , Cmax}, For Cumx we use 10-3 and 10-6

. Overall, it is apparent that the 
sorting-assisted algorithm has more overhead than the box-assisted one, but that it re­
tains its order N property for larger N and larger Emax, as can be observed from the 
lines with gradients 1 and 2. The box-assisted algorithm is of order N?, for N > 7000 
while the sorting-assisted algorithm remains of order N through to the maximum value 
N = 700000 used here. For such N the sorting assisted algorithm is one order of mag­
nitude faster than the box-assisted algorithm, while for N up to about 7000 the later is 
faster. 

The full generalized fast algorithm is quite comparable with its order N coun­
terparts up to N = 700, with the advantage that it calculates C(m,E:, N) for aJI values 
of:. However, for larger N the duration of the calcualtion increases dramatically. For 
N = 70000 the calculation takes longer than 8300 seconds (with a logarithm close to 
4.0). 

Comparison of Figures I to 4 also shows that including in the calculation many 
values of m and s does lengthen it noticeably. 

7 
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Final Remarks 

We provide a soning-assisted fast algorithm to calculate BOS-type statistics which gen­
eralizes the LeBaron's (1997) algorithm following Theiler's (1990) suggestion to first 
sort the dala. This algorithm calculates them-dimensional histogram C(m,c, N) for 
a finite set of values of m and of F. ~ Emax simultaneously, thus reducing the overall 
calculation time. When Ema.'C is small the number of calculations performed by the al­
gorithm is of order N. We compare this sorting-assisted algorithm with a somewhat 
extended implementation of Grassberger's (1990) box-assisted algorithm, which ob­
tains C(m,c:, N) for all dimensions simultaneously, including m = 1, and which allows 
for T > 1, and also with Mayer's (2000) generalized fast algorithm. We find that the 
box-assisted algorithm is faster for values of N up to several thousand, while for Nin 
the hundred thousands it is overtaken by the sorting-assisted algorithm. The general• 
ized fast algorithm performs quite comparably for small values of N. One of the main 
advantages of all of these algorithms is that they are not slowed down by including in 
the calculation many values of m and c simultaneously. 
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Program Runtimes for Different Values of N (Logarithmic Scales) 

Figure 1 
Values of Epsylon: 250; Dimensions: 32 
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Figure 3 
Values of Epsylon: 5; Dimensions: 32 
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Figure 2 
Values of Epsylon: 250; Dimensions: 2 
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Figure 4 
Values of Epsylon: 5; Dimensions: 2 
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