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Abstract 

In this paper we propose and implement an estimator to account for conditional 
heteroskedasticity and cross-sectional dependence in panel data. We present simple tests 
based on OLS and LSDV residuals to determine whether conditional heteroskedasticity 
exists and to test for individual effects in the conditional variance. Estimation of the model 
is based on direct maximization of the log-likelihood function by numerical methods. 
Monte Carlo simulations are conducted in order to evaluate the performance of this MLE 
estimator. We also present 3 empirical applications. We show that investment in a panel of 
five large U.S. manufacturing firms, inflation in a panel of seven Latin American countries, 
and consumption growth in a panel of 21 countries all exhibit significant conditional 
heteroskedasticity and cross-sectional dependence. 

Resumen 

En este articulo proponemos e implementamos un estimador que tome en cuenta la 
heterocedasticidad condicional y la dependencia de corte transversal en modelos de panel. 
Para detectar posible heterocedasticidad condicional y efectos individuates en la varianza 
condicional proponemos pruebas simples basadas en residuales de los estimadores OLS y 
LSDV. La estimaci6n del modelo se basa en la maximizaci6n directa de la funci6n 
logaritmica de verosimilitud mediante metodos numericos. El desempefio del estimador 
MLE es evaluado con simulaciones de Monte Carlo. Tambien presentamos 3 aplicaciones 
empiricas donde mostramos que la inversion en un panel de 5 empresas manufactureras de 
EUA, la inflaci6n en un panel de 7 paises latinoamericanos, y el crecimiento del consumo 
en un panel de 21 paises, exhiben heterocedasticidad condicional y dependencia de corte 
transversal significativos. 



Introduction 

Anew development in panel data econometrics is the use of large T panels of 
financial or macroeconomic data. A recent search of ECONLIT using the 

keyword phrases "financial panel data" and "macroeconomic panel data" produced 
352 and 210 hits respectively. While it is well known that such financial and 
macroeconomic time series data are conditionally heteroskedastic, rendering 
traditional estimators consistent, but inefficient, this rapidly growing literature has 
not yet addressed the issue. 

In this paper we combine typical panel modeling assumptions with the 
assumption that the error terms are multivariate normal with a time varying 
conditional variance-covariance matrix to produce a Pooled Panel-GARCH (PP
GARCH) model. We show how to estimate the model via maximum likelihood, 
present a methodology for its practical application, show some simulation evidence 
regarding its small sample properties, and present three empirical examples of the 
method. 

Of course, sophisticated multivariate GARCH models already are in wide 
use, but these models are simply not practical for most panel applications. For 
example consider a panel with a cross-sectional dimension (N) of 20. Even if we 
restrict ourselves to a GARCH(l, 1) conditional covariance matrix, the diagonal 
VECH model (Journal of Political Economy 1988) would have 630 parameters in 
the conditional covariance matrix. The BEKK model (Econometric Theory 1995) 
would require the estimation of 1010 coefficients. Even the relatively simple 
constant correlation model (Review of Economics & Statistics 1990) would have 270 
parameters. By contrast, the analogous model for the estimator we develop here 
would have no more than 25 coefficients. 

The paper is organized as follows. In section 1 we derive our basic estimator 
under the assumption of total parameter homogeneity. Section 2 discusses several 
generalizations that relax some of the homogeneity assumptions. Section 3 reports 
some simulation evidence about the finite sample properties of our estimator. 
Section 4 describes a testing and estimation procedure to determine what type of 
model is appropriate for a given set of data. In section 5, we provide three empirical 
examples of our procedure in action, investigating whether investment in a panel of 
five large US manufacturing firms, inflation in a panel of seven countries, and 
consumption growth in a panel of 21 countries exhibit conditional heteroskedasticity 
or cross-sectional dependence. Finally, section 6 concludes by reviewing our 
contribution and making some suggestions for future work. 



R. Cermeflo-K. Grier/Conditional Heteroskedasticity ... 

1. The Basic Pooled Panel-GARCH (PP-GARCH) Model 

This section describes the specification and estimation of our basic panel data model 
with a time-varying conditional covariance matrix. At this stage we assume 
complete parameter homogeneity across units in the panel. In the next section this 
assumption is relaxed to allow for some forms of parameter heterogeneity. We 
consider the following general pooled regression model: 

Y;, =µ+<j,y;,-i +x;ifl+u;,, i=l, ... ,N, t=l, ... T (1) 

where N and T are the number of cross sections and time periods in the panel 
respectively, yit is the dependent variable, µ is the common intercept 

coefficient, X;, is a row vector of exogenous explanatory variables of dimension k, p 
is a k by 1 vector of coefficients, ¢ is the AR parameter. We assume that Ir/JI < 1 and 

T is relatively large so that we can invoke the consistency of Least Squares 
estimators1

. Under the assumption ¢ = 0, the process given by equation (1) 

becomes static. The disturbance term, u ;, , is assumed to follow a mean zero normal 
distribution with 

(i) E[uitu j.] = O";~ for i = j and t=s 

(ii) E[u;,uj.] = aij, for i-::/:- j and t=s 
(2) 

{iii) E[u;,u js] = 0 for i=j and t-::/:- s 

(iv) E[u;,u js] = 0 for i-::/:- j and t-::/:- s 

Assumption (iii) states that there is no autocorrelation while assumption (iv) 
disallows non-contemporaneous cross-sectional correlation. Assumptions (i) and (ii) 
define a very general time specific variance-covariance process; some structure has 
to be imposed in order to make this process tractable. We propose the following 
model for the variance-covariance process:2 

for i = l ... N (3) 
n=I m=I 

p q 

O"ijl = 17+ LAnO"ij,1-n + LPmUi,,-muj,1-m for i-::/:- j (4) 
n=I m=l 

Hereafter, the model defined by equations (1) (conditional mean), (3) (conditional 
variance) and (4) (conditional covariance) will be referred to as Model A. 

Modeling the conditional variance-covariance process in this way is quite 
convenient in a panel data context for several reasons. First, by imposing a common 

1 
For dynamic models with fixed effects and i.i.d. errors, it is well known that the LSDV estimator is 

biased in small T samples. See for example Kiviet ( 1995). 
2 The model is an adaptation of the model in Bollerslev, Engle and Wooldrige ( 1988) 

2 
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dynamics to the variance and covariance processes across individuals, the number of 
parameters is reduced dramatically. In this particular case there are 2(p + q) + 2 
parameters, regardless of the cross-sectional dimension of the panel. Second, the 
model does not imply constant cross-sectional correlation over time.3 Third, it can 

p q 

easily be shown that the conditions a> 0, (Ibn + Ir m) < 1, and 
n=I m=I 

p q 

(I 2n + Ip m) < 1 are sufficient for the conditional variance-covariance matrix to 
n=I m=I 

be positive definite (at each point in time) and to converge over time to some fixed 
positive definite matrix. Thus, unconditionally Model A is nothing more than a 
pooled panel data model with cross-sectionally correlated disturbances. 

In vector notation we can express the static version of model (1) as: 
y, =iNµ+X,P+u,; u, ~N(0,O1); t=1, ... ,T (5) 

where y,,u, are Nx1 vectors, X, is a NxK matrix and iN is an Nx1 vector of 

ones. It should be remarked that the N-dimensional vector of disturbances, u 
1 

, is 

distributed as a zero-mean multivariate normal. The variance-covariance matrix, 
n,, is time dependent and its diagonal and off-diagonal elements are given by 

equations (3) and ( 4) respectively. The vector of observations y I is therefore 

conditionally normally distributed with mean i N µ + xp 1 , and variance-covariance 

n,. That is, y 1 ~ N(i N µ + X,P, !!1 ), and its conditional density is given by: 
N I 

f(y, /Xpµ,p,q:,)=(27r)- 2 ln,p· exp(y, -iNµ-X,p)'n; 1 (y, -iNµ-X,P) (6) 

where <p includes the parameters of the variance-covariance process given in (3) and 
(4). For the complete panel we will have the following log-likelihood function: 

I= -(~T) ln(27r)- c½)t lnln,1-c½)t(y I - iNµ- x,p)'n;1 (y, - iNµ- X,P) (7) 

This likelihood function is similar to those derived in the context of prediction error 
decomposition models for multivariate time series. 4 

It is straightforward to show that if the disturbances are cross-sectionally 
independent the NxN matrix .Q 1 becomes diagonal and the log-likelihood function 
takes the simpler form: 5 

3 Notice that a constant-correlation model would imply estimating (N 2 
- N) I 2 correlation 

parameters in addition to the conditional variance parameters, which is clearly unpractical even in 
panels with N = 1 0 . On the other hand, assuming the same (cross) correlation coefficient for each 
pair of entities in the panel would be too restrictive. 

See for example Brockwell and Davis (1991) and Harvey (1990). 
5 

Selecting between (7) and (8) is not as simple as it would appear. We discuss this issue in Section 5. 

3 
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l == - NT ln(21r)-.!_ ff 1n(a;~ (rp))-.!_ f ± (Y;1 - µ ~ </J- xit/3)2 ' 
2 2 i=I t=I 2 i=l t=l O'it ( rp) 

(8) 

Even though the OLS estimator in equation (1) is still consistent and the 
most efficient among the class of linear estimators, the MLE estimator based upon 
(7) or (8) ( depending on whether we have cross-sectionally correlated disturbances 
or not) is a more efficient non-linear estimator. In addition, by using the MLE 
estimator we can obtain the parameters of the conditional mean and conditional 
variance (covariance) equations simultaneously. 6 

From MLE theory we know that under regularity conditions the MLE 
estimator is consistent, asymptotically efficient and asymptotically normally 
distributed. We also know that these properties carry through when the observations 
are time dependent (Harvey (1990)). Therefore, we can assume that the MLE 
estimator in (7) or (8) is asymptotically normally distributed with mean equal to the 
true parameter vector and a covariance matrix equal to the inverse of the 
corresponding information matrix. These excellent asymptotic properties, however, 
do not directly speak to the properties of the estimator in sample sizes likely to be 
encountered in practice. We thus provide some evidence on the finite sample 
performance of this MLE PP-GARCH estimator relative its OLS counterpart by 
Monte Carlo simulations for a few designs. We present these results in Section 4 
below, but first present some generalizations of the basic model. 

2. Relaxing the Homogeneity Assumptions 

Model A above can easily be modified to allow for some forms of parameter 
heterogeneity. In principle, it is possible to have heterogeneity in intercepts and/or 
slopes in both the mean and variance and covariance equations. In this present work, 
we only allow for heterogeneity in intercepts in the mean and variance (equations (1) 
and (3) respectively). In addition to Model A we consider the following 3 models: 

(i) Individual effects in the mean equation and full parameter 
homogeneity in the covariance (Model B). 

(ii) Individual effects in the variance equation and full parameter 
homogeneity in the mean equation and covariance equation (Model 
C) 

(iii) Individual effects in both the mean and variance equations and full 
parameter homogeneity in the covariance equation (Model D). 

6 
In this paper we will pursue direct maximization of (7) or (8) by numerical methods using the 

Optimization module of the GAUSS program. The asymptotic covariance matrix of this MLE 
estimator will be approximated by the inverse of the outer product of the gradient of/ evaluated at 
MLE parameter estimates. 

4 
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Explicitly, Model D is defined by: 
Y;, = µ; + ¢,y;,-, + X;,P + uit, i = 1, ... , N, t = 1, ... T 

for i = 1 ... N 
n=I m=I 

p q 

aij, = 77+ LAnaij,t-n + LPmUi,,-muj,t-m for i * j 
11=1 m=l 

(9) 

(10) 

(11) 

with A and a; representing the corresponding individual specific effects. In this 

case, the full parameter vector has (2N + k + 2(p + q) + 1) elements. If the 
individual-specific effects are treated as fixed, the basic model given in the previous 
section applies directly to this case with no modifications other than including 
dummy variables in both the conditional mean and conditional variance equations. 

Model B considers individual effects in the conditional mean equation and 
common intercept and slope coefficients in the conditional variance equation 
( a; = a in equation 10). In this case there are (N + k + 2(p + q) + 2) parameters to 

be estimated. The same number of parameters would have to be estimated in the 
case of Model C.7 

3. Finite Sample Performance of the PP-GAR CH Estimator 

It is well known that in the context of time series GAR CH models, the (non-linear) 
MLE estimator not only has desirable asymptotic properties but also it is more 
efficient than the OLS estimator. Little is known, however, on the finite sample 
performance of the MLE estimator relative to its OLS counterpart in finite samples, 
particularly in panel data. 

This section presents some Monte Carlo results on the performance of the 
MLE and OLS estimators in panels with conditionally heteroskedastic and cross
sectionally correlated errors. We study the bias and precision of the MLE and OLS 
estimators of the parameters of the conditional mean equation (equation 1) as well as 
the performance of the MLE estimator of the parameters in the conditional variance 
and covariance equations (equations 3 and 4). 

We generate data according to equations (1), (3) and (4) and perform two 
sets of experiments. In the first one, we estimate the proper model by maximizing 
the log-likelihood function given by (7). In the second set of experiments, we 
incorrectly assume cross-sectional independence and estimate the model by 

7 
We impose homogeneity on the conditional covariance process in all cases. Including individual 

effects in the covariance is possible in principle, but generally impractical since it would imply 

estimating ( N 2 
- N) 12 additional parameters. 

5 
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maximizing the log-likelihood function given by (8). In this case we want to see how 
costly it is to assume cross-sectional independence when it is not true. 

3.1. Monte Carlo design 

For both sets of simulations the data generating model is defined by equations (1 ), 
(3) and (4). Recall that the last equation defines the dynamics of the conditional 
covariance process for each pair of entities in the panel. For practical purposes we 
study only the static mean pooled regression model with ARCH (1) variance and 
covariance processes.8 For the conditional mean we set µ = p = 1 and for the 

conditional variance we set a= l, r, = 0.8. For the conditional covariance process 

we assume 77 = 0.5 , and we allow p, to take the alternative values {0.25,0.5} . In 
this way we will be able to evaluate the performance of the OLS and MLE 
estimators as the persistence of conditional covariance process is increased. The 
results are presented in Tables Al to A4. For both sets of experiments we have set 
the number of trials in each Monte Carlo experiment to 1000. 

3.2. Performance of the theoretically correct Panel GAR CH estimator 

Tables Al and A2 show the results of our first set of simulations. The first 
observation is that as T increases for a given N, the OLS and MLE estimators of the 
intercept and slope coefficients in the mean equation improve on a mean squared 
error criterion. Second, when comparing the OLS and MLE estimators (for the 
mean equation), we find that the MLE outperforms the OLS estimator in terms of 
bias, precision and mean squared error. In every sample, the MLE estimator has a 
MSE smaller than the OLS estimator by at least a factor of 4 when p, =.25 and at 

least a factor of 5 when p 1 = .5. 
Turning to the MLE estimator of the variance coefficients a and 

y1 (intercept and ARCH (1) coefficient respectively), in both cases we observe 
improvements in precision and mean squared error as T increases. However, there is 
no obvious pattern in the biases. On a mean squared error criterion, the MLE 
estimator of the variance coefficients appears to be quite acceptable. The same 
pattern is observed for the covariance coefficients 77 and p 1 although their mean 
squared errors are higher than those of the variance coefficients. 

Another observation is that as the persistence of the covariance process is 
increased the performance of the OLS estimator in terms of precision and MSE 
worsens (compare the OLS panels of tables Al and A2). For the MLE estimator, 
however, we do not observe a similar pattern. Overall, on a mean squared error 

8 We have performed other simulations with dynamic mean equations and with GARCH(l,l) 
conditional covariance processes with results qualitatively similar to those presented in the text. 
These additional simulations are available upon request. 

6 



R. Cermefio-K. Grier/Conditional Heteroskedasticity ... 

criterion, the performance of the MLE is quite acceptable and regarding the mean 
coefficients this estimator significantly outperforms its OLS counterpart. 

3.3. Performance of the miss-specified PP-GARCH estimator 

In these simulations we ignore the fact that the data is cross sectionally correlated by 
assuming that the coefficients 77 and p 1 are zero (i.e. we incorrectly assume that 
there is cross-sectional independence). Now both the OLS and the PP-GARCH 
estimators are misspecified. Regarding the parameters in the mean equation, we 
observe that the performance of both estimators improves with the sample size and 
that the PP-GARCH estimator clearly outperforms the OLS estimator. In fact the 
MSEs for the PP-GARCH estimator are always smaller by at least a factor of 2.5. 
The main cost of ignoring the conditional covariance terms is a lack of precision in 
estimating the conditional variance terms. This can be seen by comparing the MSEs 
for a and y1 across the relevant entries in Tables Al and A3, as well as in Tables 
A2 and A4. While even the misspecified PP-GARCH model dominates OLS, there 
is a clear benefit to modeling cross-sectional correlation when it is present. 

4. Choosing the Correct PP-GARCH model 

We propose the following methodology to identify the appropriate statistical model. 
First, test for the presence of individual effects in the mean equation. Second, test 
for ARCH effects using OLS or LSDV residuals depending on the results in the first 
step. Third, determine if there are individual effects in the conditional variance 
process. Finally, after choosing and estimating a model, check its residuals to 
ensure that there is no remaining conditional heteroskedasticity. 

4.1. Testingfor individual effects in the mean equation 

We test for individual effects in the mean equation using the LSDV estimator with 
heteroskedasticity and autocorrelation consistent covariance matrix, along the lines 
of White (1980) and Newey and West (1987) estimators applied to panel.9 

For models A and B, where the variance process is identical across units, the 
OLS and LSDV are still best linear estimators. However for models C and D the 
unconditional variance will be different across units and the previous estimators will 
no longer be efficient. Therefore, inference based upon them will not be valid. 

9 Arellano (1987) has extended the White's heteroskedasticity consistent covariance estimator to 
panel data but this estimator is not apropriate here since it has been formulated for small T and large 
N panels which is not our case. 

7 
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Given that we do not know a priori which is the appropriate model and that we can 
have auto correlation problems in practice, it seems convenient to use a covariance 
matrix robust to heteroskedasticity and autocorrelation. Specifically we will test the 
null hypothesis HO : µ 1 = µ 2 = • • • = µ N by means of a Wald-test, which will follow a 

X<2
N-i> distribution asymptotically. 

4.2. Testing for ARCH effects and individual effects in the conditional variance 

The second step uses either LSDV or OLS squared residuals (according to whether 
individual effects were found or not in the mean equation) to test for ARCH effects. 
We can use the estimated autocorrelation and / or partial autocorrelation coefficients 
to determine the existence and possible order of ARCH effects. Alternatively, the 
null hypothesis of conditional homoskedasticity or ARCH (0), against ARCH (j) can 
be tested for a few relevant values of}. This can be done via LM-test statistics based 
on the previous squared residuals and referred to the x <~> distribution. In practice, 

rejecting ARCH(0) in favor of a large number of significant lags will lead to the 
estimation of a GARCH model. That is to say, we are testing for ARCH, but given 
that a GARCH(l, 1) approximates quite well ARCH models of arbitrarily large 
orders, we are considering here as viable alternatives ARCH(l), ARCH(2), and 
GARCH(l,1). 

Finally, we test for individual effects in the ARCH process in two ways. 
First we test whether the squared residuals have a constant mean across the cross
sectional units. Second, we regress the OLS/LSDV squared residuals on an 
appropriate number of lagged squared residuals with and without individual effects 
and compare the fits via an For Chi-square test. 

4. 3. Selecting the final model 

After initially choosing an appropriate conditional variance model, based on the 
steps described above, and estimating the full model via maximum likelihood, it is 
important to make sure that all conditional heteroskedasticty has been captured in 
the estimation. We accomplish this in two ways. First, we add additional auto
regressive or moving average terms and check their significance. Second, we test 
the squared normalized residuals for any autocorrelation pattern. If significant 
patterns remain, alternative specifications of the conditional variance should be 
estimated and checked. At this final stage it also seems appropriate to evaluate 
whether a model with cross-sectional independent disturbances (i.e. zero 
covariances) is plausible. If after estimating the full model by maximizing the log
likelihood given in (7), we find that all the parameters of equation ( 4) are not 
significantly different from zero we can conclude in favor of cross-sectional 
independence since the covariances are zero conditionally and unconditionally. In 
this case we can re-estimate the model using the simpler log-likelihood function 

8 
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given by (8). Otherwise, we keep the unrestricted results from maximization of (7). 
Alternatively, we can test the hypothesis of cross-sectional independence by means 
of a likelihood ratio test upon estimating (7) and (8). 10 

5. Examples 

In this section we illustrate the applicability of the PP-GARCH model with three 
examples using real world data. 

5.1. Investment in a panel of five large U.S manufacturing firms 

Here we use the well-known Grunfeld investment data set. 11 This is a panel of 5 
large U.S. firms over 20 years. For each firm and for every year we have 
observations on gross investment (/), the market value of the firm (F), and the value 
of the stock of plant and equipment ( C). The values of the variables F and C 
correspond to the end of the previous year. We test whether the conditional variance 
of the investment process is time dependent. 

The model is specified as follows: 
lit= A+ f31F;, + f32C;, + U;,' 

p q 

a;; = ai + Ionai~t-n + Ir mu~l-m 
n=l m=I 

p q 

aij, =11+ LAnO'ij,t-n + LPmUi.t_muj,t-m 
n=I m=I 

i = 1, ... ,5; t = 1, ... ,20 (12) 

(13) 

(14) 

We begin by testing for individual effects in the mean equation. The 
computed Wald statistic (using a HAC covariance matrix with lag truncation equal 
to 2), is Xc2

4> = 115.98, which is large enough to clearly reject the null hypothesis of 

no individual effects in the mean equation. Next we attempt to identify ARCH 
effects using the squared residuals from LSDV estimation of the mean equation. 
The computed partial auto correlation coefficients of the squared residuals are 
displayed in Table 1. 

10 We want to remark that in a panel GARCH context the issue of cross-sectional independence can 
not be evaluated with usual tests for cross-sectional correlation since they are focused on determining 
whether or not the unconditional covariances (and cross-correlations) are significantly different from 
zero. By examining equation (5) we can easily see that if the intercept is equal to zero but the slope 
coefficients are not, we still have non-zero conditional covariances and therefore cross-sectional 
dependence even though unconditionally we will have zero covariances and cross-sectional 
independence. 
11 These data are taken from Greene ( 1997, p. 650, Table 15 .1 ). 

9 



R. Cermefio-K. Grier/Conditional Heleroskedasticity ... 

In these data, only the first partial autocorrelation coefficient is statistically 
significant at the 0.05 level. It thus appears that the conditional variance of the error 
process follows an ARCH(l) process. Next, we try to determine if the conditional 
variance equation has individual effects by regressing the LSDV squared residuals 
on their first lag and a set of firm specific intercepts and then testing whether the 
intercepts share a common coefficient. 

The computed statistics F<4 .94 l = 2.960 and %<2
4 ) = 11.864 reject the null 

hypothesis of no individual effects in the conditional variance at the 5% significance 
level. The model selection process thus suggests that there are individual effects in 
the mean equation, and that the conditional variance follows an ARCH (1) with 
individual effects, which is our model D in section 3 above. 

Table 2 presents maximum likelihood estimates of this model in the sixth 
row of the table. For comparison we also present five other models, which are 
restricted versions of Model D. As noted above, the data reject the null hypothesis 
of no individual effects in the mean equation at the 0.01 level. This can be seen in 
Table 2 either by comparing either rows one and two (OLS vs. LSDV) or by 
comparing rows three and four (ARCH(l) pooled vs. ARCH(l) with individual 
mean effects). The data also reject the null hypothesis of conditional 
homoskedasticity, also at the 0.01 level. This can be seen either by comparing rows 
one and three (OLS vs. ARCH(l) pooled), or rows two and four (LSDV vs. 
ARCH(l) with individual mean effects) in Table 2. Finally the data reject the null 
hypothesis of no individual effects in the conditional variance equation at the 0.01 
level (as seen by comparing rows 4 and 5 in Table 2). The final preferred model is 
still Model D, the final estimation in Table 2, which can be described as an 
ARCH(l) diagonal covariance with individual effects in both the mean and 
conditional variance equations. We do not find evidence of any significant auto
correlation in the normalized squared residuals from Model D, indicating that this 
specification is probably adequate. 

From the reported results, we see that accounting for the conditional 
heteroskedasticity and cross-sectional dependence in these data notably changes the 
values of the coefficients on the explanatory variables in the mean equation. The 
coefficient on C (value of the firm's plant and equipment) falls from around .11 
using LSDV to .04 using our PP-GARCH estimator, while remaining significant at 
the 0.01 level. The coefficient on F (the firm's market capitalization) falls from .35 
using LSDV to .09 with PP-GARCH and loses its statistical significance as well. 12 

In sum we find that this well-known panel, contains significant conditional 
heteroskedasticity and cross-sectional correlation. Further, modeling these 
phenomena materially affects the results of interest. 

12 It is also interesting to note that including the individual effect in the conditional variance changes 
the model from possibly non-stationary (ARCH coefficient> 1.0) to stationary (ARCH coefficient of 
0.90). 

10 
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5.2. Inflation in a panel of Latin American countries 

Here we study inflation in 7 countries (Argentina, Brasil, Chile, Colombia, Mexico, 
Peru and Venezuela) using quarterly observations on inflation rates (n-) from 1991.1 
to 1999.4. 13 Many papers have used a time-varying error variance as a measure of 
time-varying inflation uncertainty. In this application, we investigate whether such 
uncertainty still exists in Latin American countries in the relatively tranquil 1990's. 

The model is given in equations 15-17. Note that the mean of inflation is 
specified as a simple AR(]) process: 

lr;, = µ; + /J1lru-1 + U;,' 

p q 

a-;; =a;+ I 0na-i~t-n + Irmui\-m 
n=I m=I 

p q 

(J"ijt = 17+ LAn<J"ij,t-n + LPmUi,1-luj,t-m 
n=l m=l 

i = 1, ... , 7; t = 1, ... ,36 (15) 

(16) 

(17) 

Again, we allow for heterogeneity only through individual effects in the conditional 
mean and conditional variance equations. Testing for individual effects in the mean 
equation yields the computed Wald statistic (using a HAC covariance matrix with 
lag truncation equal to 2,) of x)6> = 7.82, which is insignificant at any conventional 

level. In this case, there is no evidence against the null of no individual effects in the 
mean equation. 

Table 3 presents the computed partial auto-correlation coefficients of the 
squared OLS residuals for the first 10 lags. Only the first autocorrelation is 
statistically significant, leading again to the preliminary choice of an ARCH(l) 
model for the conditional variance of inflation in this panel. 

To look for individual effects in the conditional variance equation, we tested 
the null hypothesis of equality of the average squared residual across the seven 
countries and tested the significance of country specific intercepts in a regression of 
the squared residual on its first lag. In neither case was there any evidence found in 
favor of individual effects in the conditional variance. 

The model selection procedure here picks an ARCH(l) covariance model 
with full parameter homogeneity in both equations (Model A). The three panels in 
Table 4 show the estimated inflation process using pooled OLS, then using Model A 
with the covariance coefficients constrained to be zero, then our preferred model for 
these data, Model A. 

We find a strong degree of conditional heteroskedasticity in these data, with 
a highly significant estimated moving average coefficient of around .66 in the last 
panel. A likelihood ratio tests rejects the null hypothesis of cross-sectional 
independence at the 0.05 level. Relative to OLS, the MLE estimator finds a larger 

13 
These data are compiled from the International Monetary Fund's (IMF) International Financial 

Statistics CD dated March 2000. 
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(1.9 vs_ 1) and more significant intercept term and a smaller (.79 vs .. 91) AR(l) term 
in the mean equation. 

Even in the 1990s, Latin American inflation exhibits strong, though not very 
persistent volatility clustering and cross sectional dependence, indicating that there 
is still substantial inflation uncertainty and interdependence in the region. 

5. 3. Lack of consumption risk sharing in a panel of 21 countries 

One of the empirical puzzles in international economics is that consumption 
fluctuations are highly correlated with idiosyncratic income fluctuations, while the 
theory predicts that these fluctuations should only be correlated with aggregate 
fluctuations. Following Lewis ( 1996) and Driscoll & Kraay ( 1998) we estimate 
cross-national panel regressions of the form: 

(18) 

Where C11 is the growth rate of consumption in country j at time t, and X 11 is the 

deviation of GDP growth in country j at time t from the world average GDP 
growth at time t . Under perfect consumption risk sharing, fJ should not be 
significantly different from zero. For the sample, we chose the 21 countries in the 
Penn World Tables with data quality of C+ or better and no missing observations 
between 1950 and 1992. 14 Our panel dimensions are N=21 and T=42. 

In the first column of Table 5, we present OLS estimates of /J along with the 
OLS standard error and White's heteroskedasticity consistent standard error, which 
is about 26% larger. The second column of the Table reports the analogous 
coefficient and standard error resulting from applying our PP-GARCH estimator to 
the data assuming that the conditional variance and covariance equations each 
follow an ARCH(l) process. While the estimated coefficient is very similar (a 2.5% 
difference), the estimated standard error is roughly 29% smaller than the OLS 
standard error. There is significant conditional heteroskedasticity and cross sectional 
correlation in this panel as can be seen by examining the estimated conditional 
variance and covariance equations presented in the bottom half of Table 5. 

14 The countries are: Australia, Austria, Belgium, Brazil, Canada, Denmark, Finland, France, 
Germany, Ireland, Italy, Japan, Mexico, Netherlands, Norway, New Zealand, Spain, Sweden, 
Switzerland, UK, and USA. 

12 
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6. Conclusions 

In this paper we present an estimator designed to deal with issues of conditional 
heteroskedasticity and cross-sectional correlation in panel data. The estimator is 
especially relevant due to the following 4 factors: (1) The rapid growth of research 
using large T panels, (2) The ubiquity of conditional heteroskedasticity in 
macroeconomic and financial data, (3) the potential extreme inefficiency of 
estimators that fail to account for these phenomena, and ( 4) the impracticality of 
using existing multivariate GARCH models in a panel setting. 

We show how to estimate the model via maximum likelihood and present 
simulations to shed light on its small sample properties and to illustrate the 
consequences of modeling the conditional variance but ignoring the cross-sectional 
correlation. We outline a methodology for model selection, then give 3 examples of 
real world panels that contain significant conditional heteroskedasticity and cross 
sectional correlation. We believe our results strongly indicate that inferences drawn 
from real world panels that ignore these phenomena may well be in error. 

Future work on this topic could include extending the model to permit the 
conditional variance to influence the conditional mean (PP-GARCH-M), allowing 
for exogenous variables in the conditional variance equation, and perhaps employing 
more sophisticated models of the covariance matrix without losing the ability to 
estimate the model on real world panels. 

13 
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TABLE 1: 
Estimated partial auto-correlation coefficients on squared LSDV residuals 

(Grunfeld investment data) 

Coefficient t-ratio p-value 

PAC(l) 0.5225* 4.0785 0.0000 
PAC(2) -0.0925 -0.6633 0.7455 
PAC(3) 0.0519 0.3542 0.3621 
PAC(4) 0.0728 0.4862 0.3139 
PAC(5) 0.2325° 1.5168 0.0664 
PAC(6) -0.1235 -0.7816 0.7817 
PAC(7) 0.1293 0.7731 0.2207 
PAC(8) 0.0482 0.2828 0.3889 
PAC(9) 0.1245 0.6978 0.2435 
PAC(l0) -0.1638 -0.9763 0.8342 

LSDV estimated squared residuals are used since there is evidence of individual effects in the mean 
equation. The symbols *, " and 0 indicate respectively 1 %, 5% and 10% significance levels. 

14 
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TABLE 2: 
Panel estimation results for Investment with conditional heteroskedasticity 

and cross-sectional correlation 

Constant µ. µz µ3 ~ ~ F C 

OLS estimates -48.0297 0.1051 0.3054 
Mean equation (-2.136)" (8.2780)* (3.8407)* 

a-2 = 16194.677 

LSDV estimates -76.0668 -29.3736 -242.1708 -57.8994 92.5385 0.1060 0.3467 
Mean equation (-0.803) 

(-1.7878) 0 (-4.9985)* (-3.375)* 
(I 7413)0 (4.8109)* (7.1722)* 

a
2 = 4777.2951 

ARCH(]): -37.4254 0.1087 0.3358 
Pooled (-6.6876)* (40.3168)* (15.2096)* 
Regression 
(Model A with cross-sectional independence) 

a-1
2 = 796.6344+ l.5593a:_1 

( 1.5385 ) 0 (2.9566 Y 

ARCH(]): 222.2649 20.6421 -82.6617 -4.8258 230.9331 0.0502 0.1699 
Individual (11.6958)• (4.9555)* (-6.4023)* (-0.9006) (21.7843)* (10.4699)* (20.0284)* 
Effects in mean only 
(Model B with cross-sectional independence) 

a-1

2 =109.4899+2.189oa:_, 
(3.0355)* (S.3285)* 

ARCH(!): 256.4222 24.7232 -51.7389 -0.2614 275.3949 0.0457 0.1518 
Individual (8.3794)" (3.5760)* (-1.9547)" (-0.0368) (7.8697)* (3.7677)* (3.0724)* 
Effects in mean and variance 
(Model D with cross-sectional independence) 

Log-
likelihood 
-624.99 

-561.8468 

-584.8165 

-510.6109 

-503.6508 

a-1

2 = 2434.819+ 124.2918+ 594.4582+ 74.3458+ 5852.0537+ 0.9004a,~1 (0.9555) (1.so53y (2.5735)* (2.1779)" (2.079JY (2.8303)• 

ARCH(!): 280.5919 31.2229 -18.9448 4.0096 225.0933 0.0444 0.0889 -492.3286 
Individual (4.8889)• (3.8360)* (-0.7788) (0.6342) (7.0838)* (4.1186)* (1.4966)" 
Effects in mean and variance 
(Model D: Pooled diagonal VECH)) 

0"~1 = 4177.46+ 231.4123+ 406.8610+ 67.2430+ 3442.7053+ 0.9085 a~, I 
II (J.8685) 0 (1.6978) 0 (2.7945)• (1.9248) 0 (1.5856) (2.9523)* II -

a-:, = 76.1522+ 0.7254a:,-, 
(1.6500) 0 (2.3668Y 

Panel ARCH estimates have been obtained by direct maximization of the log-likelihood function by 
numerical methods. For each model we show the mean coefficients followed by the estimated 
equation for the conditional variance process. Values in parenthesis are !-ratios and the symbols*,", 
0

, indicate significance levels of I%, 5% and I 0% respectively. The t-ratios for OLS and LSDV 
estimates are based on HAC standard errors with a lag truncation of 2. 
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TABLE 3: 
Estimated partial auto-correlation coefficients on squared OLS residuals 

(inflation data) 

Coefficient t-ratio p-value 

PAC(l) 0.3637** 5.6554 0.0000 
PAC(2) -0.0143 -0.2083 0.4176 
PAC(3) 0.0386 0.5640 0.2866 
PAC(4) 0.0323 0.4720 0.3187 
PAC(5) -0.0216 -0.3147 0.3766 
PAC(6) 0.0210 0.3060 0.3799 
PAC(7) 0.0107 0.1566 0.4379 
PAC{8) -0.0041 -0.0601 0.4761 
PAC(9) -0.0182 -0.2661 0.3952 
PAC{l0) 0.0577 0.8969 0.1853 

OLS estimated squared residuals are used since there is evidence of no individual effects in the mean 
equation. The symbol ** indicate 1 % significance levels. 
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TABLE 4: 
Panel estimation results for Inflation with conditional heteroskedasticity and 

cross-sectional correlation 

OLS estimates 
Mean equation 

ARCH(l): 
Pooled regression 

(Model A with cross 
sectional 

independence) 

ARCH(l): 
Pooled VECH 

Regression 
(Model A) 

Constant 
1.0392 

(0.5547) 

1.8356 
(3.3807)* 

1.9016 
(3.6363)* 

0.9065 
(9.7488)* 

c; 2 = 570.974 

0.8195 
(37.2695)* 

CF 1
2 = 36.2354+ 0.8297-a:_l 

(8.1457)> (6.1209)• 

0.7996 
(35.8912)* 

Ci~ = 35.4813+ 0.6626-a~ 1 111 (8.5355)• (5.9655)• ut-

Ci~ =-0.5490-0.1229-a~ 1 
IJI (0.7703) (-3.0812)• 1]I-

Log-likelihood 
-1156.3338 

-926.1028 

-920.8791 

Panel ARCH estimates have been obtained by direct maximization of the log-likelihood function by 
numerical methods. For each model we show the mean coefficients followed by the estimated 
variance or the estimated equation for the conditional variance process. Values in parenthesis are t
ratios and the symbol ('I') indicates significance level of 1 %. The t-ratios for OLS estimates are based 
on HAC standard errors with a lag truncation of 3. 
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TABLES: 
Panel estimation results for Consumption Growth with heteroskedasticity and 

cross-sectional correlation 

A. Estimated Conditional mean equation: C jt = 0 + /JX jt + 6 jt 

/JoLS 
0.803 

J)MLE 

Standard error /J oLs 0.5225* Standard error J) ML£ 

(Panel GARCH) 
White std. error J) oLs 0.0352 

B. Estimated Conditional variance and covariance equations (Panel GARCH) 

CY iit = 4. 0621 + 0.2368 6 ;;,_1 
7.5632° 5.4319• 

(J"IJ •• I = 2.1220 +0.0457 6-1-16 H 
4.0674• 1.7643° I j 

0.7829 

0.0198 

0.3621 

Values in parenthesis for the conditional variance and covariance equations are t-ratios. The symbols 
* and O indicate respectively 1 %, and 10% significance levels. 

18 
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APPENDIX 

TABLE Al: 
Monte Carlo results for static mean pool VECH model with cross-sectional correlation and 

ARCH (1) errors in variance and covariance (y1 = 0.8,p1 = 0.25) 

OLS MLE 
Coeff Bias (%) Std. (%) MSE (%) Bias (%) Std. (%) MSE 

Dev. Dev. 
µ -0.011 -1.1 0.4809 48.1 0.2314 23.1 0.0003 0.0 0.2290 23 0.0524 
p 0.0211 2.1 0.7728 77.3 0.5977 59.8 -0.004 -0.3 0.3385 34 0.1146 
a -0.018 -1.8 0.2782 28 0.0777 
Y1 -0.034 -4.3 0.1303 16 0.0181 
1] -0.022 -4.3 0.2429 49 0.0595 
P, -0.015 -6.0 0.1568 63 0.0248 
µ -0.013 -1.3 0.2836 28.4 0.0806 8.1 -0.002 -0.2 0.1423 14 0.0202 
p 0.0308 3.1 0.4451 44.5 0.1991 19.9 0.0094 0.9 0.2085 21 0.0436 
a -0.003 -0.3 0.1698 17 0.0288 
Y1 -0.021 -2.7 0.0956 12 0.0096 
1] -0.007 -1.3 0.1533 31 0.0235 
P, -0.014 -5.7 0.1049 42 0.0112 
µ -0.001 -0.1 0.2299 23.0 0.0529 5.3 0.0029 0.3 0.0952 9.5 0.0091 

T= 100 /J -0.000 0.0 0.3617 36.2 0.1308 13.1 -0.006 -0.6 0.1481 15 0.0220 
a 0.0066 0.7 0.1238 12 0.0154 
Y1 -0.007 -0.9 0.0749 9.4 0.0057 
1] 0.0051 1.0 0.1114 22 0.0124 
P, -0.003 -1.1 0.0696 28 0.0048 

N= 10 µ 0.0048 0.5 0.3447 34.5 0.1189 11.9 0.0044 0.4 0.1488 15 0.0222 
T=20 p -0.007 -0.6 0.5212 52.1 0.2716 27.2 -0.002 -0.2 0.2240 22 0.0502 

a -0.006 -0.6 0.2190 22 0.0480 
Yi -0.014 -1.8 0.0860 11 0.0076 
1] 0.0011 0.2 0.1959 39 0.0384 
P, -0.011 -4.3 0.1001 40 0.0101 

N= 10 µ 0.0103 1.0 0.2242 22.4 0.0504 5.0 0.0019 0.2 0.0978 9.8 0.0096 
T=50 p -0.016 -1.6 0.3364 33.6 0.1134 11.3 -0.002 -0.2 0.1408 14 0.0198 

a -0.002 -0.2 0.1432 14 0.0205 
Yi -0.006 -0.8 0.0634 7.9 0.0041 
1] -0.004 -0.8 0.1294 26 0.0168 
P, -0.004 -1.6 0.0653 26 0.0043 

N= 10 µ 0.0009 0.1 0.1702 17.0 0.0290 2.9 -0.001 -0.1 0.0686 6.9 0.0047 
T= 100 /J 0.0058 0.6 0.2466 24.7 0.0608 6.1 0.0046 0.5 0.0967 9.7 0.0094 

a -0.004 -0.4 0.0945 9.5 0.0090 
Yi -0.003 -0.4 0.0548 6.8 0.0030 
1] -0.006 -1.1 0.0868 17 0.0076 
P, -0.003 -1.0 0.0480 19 0.0023 

19 

(%) 

5.2 
12 

7.8 
2.3 
12 

9.9 
2.0 
4.4 
2.9 
1.2 
4.7 
4.5 
0.9 
2.2 
1.5 
0.7 
2.5 
1.9 
2.2 
5.0 
4.8 
1.0 
7.7 
4.1 
1.0 
2.0 
2.1 
0.5 
3.4 
1.7 
0.5 
0.9 
0.9 
0.4 
1.5 
0.9 
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TABLE Al (Continued): 
Monte Carlo results for static mean pool VECH model with cross-sectional correlation and 

ARCH (1) errors in variance and covariance (y1 = 0.8,p1 = 0.25) 

OLS MLE 
Coeff Bias (%) Std. (%) MSE (%) Bias (%) Std. (%) MSE 

Dev. Dev. 
µ -0.010 -1.0 0.2869 28.7 0.0824 8.2 -0.001 0.0 0.1144 11 0.0131 
p 0.0119 1.2 0.3710 37.1 0.1378 13.8 0.0047 0.5 0.1464 15 0.0214 
a 0.0018 0.2 0.1914 19 0.0367 
Y1 -0.009 -1.1 0.0604 7.5 0.0037 
1] -0.001 -0.1 0.1766 35 0.0312 
f), -0.008 -3.1 0.0764 31 0.0059 
µ 0.0009 0.1 0.1819 18.2 0.0331 3.3 -0.002 -0.2 0.0684 6.8 0.0047 
p 0.0036 0.4 0.2353 23.5 0.0554 5.5 0.0069 0.7 0.0925 9.3 0.0086 
a -0.003 -0.3 0.1198 12 0.0144 
Y1 -0.007 -0.9 0.0510 6.4 0.0027 
1] -0.003 -0.5 0.1122 22 0.0126 
P, -0.010 -3.8 0.0493 20 0.0025 
µ 0.0039 0.4 0.1314 13.1 0.0173 1.7 0.0015 0.1 0.0500 5.0 0.0025 

T= 100 p 0.0010 0.1 0.1790 17.9 0.0321 3.2 -0.001 -0.1 0.0684 6.8 0.0047 
a -0.000 0.0 0.0831 8.3 0.0069 
Y1 -0.005 -0.6 0.0412 5.2 0.0017 
1] -0.000 -0.1 0.0781 16 0.0061 
P, -0.006 -2.3 0.0390 16 0.0016 

20 

(%) 

1.3 
2.1 
3.7 
0.5 
6.2 
2.4 
0.5 
0.9 
1.4 
0.3 
2.5 
1.0 
0.2 
0.5 
0.7 
0.2 
1.2 
0.6 
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TABLEA2: 
Monte Carlo results for static mean pool VECH model with cross-sectional correlation and 

ARCH (1) errors in variance and covariance (Yi = 0.8,Pi = 0.5) 

OLS MLE 
Coeff Bias (%) Std. (%) MSE (%) Bias (%) Std. (%) MSE 

Dev. Dev. 
µ -0.012 -1.2 0.5327 53.3 0.2839 28.4 -0.004 -0.4 0.2190 22 0.0480 
p 0.0171 1.7 0.7868 78.7 0.6193 61.9 0.0076 0.8 0.3087 31 0.0954 
a -0.025 -2.5 0.2640 26 0.0704 
Yi -0.037 -4.6 0.1272 16 0.0176 
17 -0.018 -3.7 0.2391 48 0.0575 
o. -0.038 -7.6 0.1567 31 0.0260 
µ -0.004 -0.4 0.3198 32.0 0.1023 10.2 0.0016 0.2 0.1290 13 0.0167 
p 0.0064 0.6 0.5046 50.5 0.2546 25.5 -0.002 -0.2 0.1934 19 0.0374 
a 0.0045 0.4 0.1685 17 0.0284 
Yi -0.017 -2.1 0.0960 12 0.0095 
17 0.0048 1.0 0.1557 31 0.0243 
/J, -0.016 -3.1 0.1020 20 0.0106 
µ 0.0013 0.1 0.2343 23.4 0.0549 5.5 0.0011 0.1 0.0970 9.7 0.0094 
p -0.004 -0.4 0.3666 36.7 0.1344 13.4 -0.004 -0.4 0.1356 14 0.0184 
a -0.007 -0.7 0.1151 12 0.0133 
Yi -0.009 -1.1 0.0745 9.3 0.0056 
17 -0.005 -1.1 0.1030 21 0.0106 
/J, -0.008 -1.5 0.0789 16 0.0063 
µ -0.006 -0.5 0.3805 38.1 0.1448 14.5 -0.001 -0.1 0.1661 17 0.0276 
p -0.007 -0.7 0.5991 59.9 0.3590 35.9 0.0050 0.5 0.2231 22 0.0498 
a -0.020 -2.0 0.2189 22 0.0483 
Yi -0.020 -2.5 0.0926 12 0.0090 
17 -0.017 -3.4 0.2054 41 0.0425 
o. -0.028 -5.5 0.1090 22 0.0126 
µ -0.004 -0.4 0.2433 24.3 0.0592 5.9 0.0029 0.3 0.0975 9.7 0.0095 
p 0.0076 0.8 0.3447 34.5 0.1189 11.9 -0.000 0.0 0.1267 13 0.0160 
a -0.007 -0.7 0.1347 14 0.0182 
Yi -0.016 -2.0 0.0731 9.1 0.0056 
17 -0.006 -1.3 0.1208 24 0.0146 
/J, -0.015 -2.9 0.0771 15 0.0062 
µ 0.0002 0.0 0.1864 18.6 0.0347 3.5 -0.001 -0.1 0.0687 6.9 0.0047 
p 0.0104 1.0 0.2641 26.4 0.0698 7.0 0.0047 0.5 0.0891 8.9 0.0080 
a -0.004 -0.4 0.0922 9.2 0.0085 
Yi -0.008 -0.9 0.0596 7.5 0.0036 
17 -0.005 -1.1 0.0859 17 0.0074 
/J, -0.008 -1.6 0.0590 12 0.0036 
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4.8 
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TABLE A2 (Continued): 
Monte Carlo results for static mean pool VECH model with cross-sectional correlation and 

ARCH (1) errors in variance and covariance (Yi= 0.8,Pi = 0.5), 

OLS MLE 
Coeff Bias (%) Std. (%) MSE (%) Bias (%) Std. (%) MSE 

Dev. Dev. 
µ -0.005 -0.5 0.3035 30.3 0.0921 9.2 -0.002 -0.2 0.1216 12 0.0148 
/3 0.0060 0.6 0.3550 35.5 0.1261 12.6 0.0047 0.5 0.1342 13 0.0180 
a -0.002 -0.1 0.1842 18 0.0339 
Yi -0.012 -1.5 0.0646 8.1 0.0043 
17 -0.004 -0.7 0.1752 35 0.0307 
/J, -0.013 -2.5 0.0785 16 0.0063 
µ 0.0063 0.6 0.2190 21.9 0.0480 4.8 0.0000 0.0 0.0725 7.2 0.0053 
/3 0.0013 0.1 0.2498 25.0 0.0624 6.2 0.0058 0.6 0.0831 8.3 0.0069 
a -0.004 -0.4 0.1178 12 0.0139 
Yi -0.011 -1.4 0.0550 6.9 0.0032 
17 -0.004 -0.9 0.1126 23 0.0127 
P, -0.014 -2.7 0.0579 12 0.0035 
µ 0.0082 0.8 0.1633 16.3 0.0267 2.7 0.0021 0.2 0.0519 5.2 0.0027 

T= 100 /3 -0.002 -0.2 0.1955 19.5 0.0382 3.8 -0.001 -0.1 0.0619 6.2 0.0038 
a -0.001 -0.1 0.0818 8.2 0.0067 
Yi -0.009 -1.1 0.0474 5.9 0.0023 
17 -0.001 -0.2 0.0783 16 0.0061 
/J, -0.010 -1.9 0.0494 9.9 0.0025 
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1.5 
1.8 
3.4 
0.5 
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TABLEA3: 
Monte Carlo results for static mean pool VECH model with cross-sectional correlation and 

ARCH ( 1) errors in variance and covariance when cross-sectional correlation is ignored 
(Yi = 0.8,pl = 0.25) 

OLS MLE 
Coeff Bias (%) Std. (%) MSE (%) Bias (%) Std. (%) MSE 

Dev. Dev. 
µ -0.001 -0.1 0.4330 43.3 0.1875 18.8 0.0152 1.5 0.2769 28 0.0769 

/J 0.0193 1.9 0.6801 68.0 0.4630 46.3 -0.013 -1.3 0.3982 40 0.1587 
a 0.0048 0.5 0.4462 45 0.1991 
Y, 0.0093 1.2 0.2674 33 0.0716 
µ -0.006 -0.6 0.3158 31.6 0.0998 10.0 0.0020 0.2 0.1708 17 0.0292 
/J 0.0054 0.5 0.5009 50.1 0.2509 25.1 -0.001 -0.1 0.2463 25 0.0607 
a 0.0142 1.4 0.2741 27 0.0754 
r, 0.0150 1.9 0.1775 22 0.0317 
µ 0.0005 0.1 0.2329 23.3 0.0543 5.4 0.0034 0.3 0.1340 13 0.0180 

T= 100 /3 0.0038 0.4 0.3531 35.3 0.1247 12.5 -0.007 -0.7 0.1812 18 0.0329 
a -0.002 -0.2 0.1885 19 0.0355 
r, 0.0040 0.5 0.1244 16 0.0155 

N= 10 µ -0.013 -1.3 0.4062 40.6 0.1651 16.5 0.0004 0.0 0.2429 24 0.0590 
T=20 /3 0.0338 3.4 0.5623 56.2 0.3173 31.7 0.0146 1.5 0.2987 30 0.0894 

a -0.003 -0.3 0.4120 41 0.1697 
Y, 0.0256 3.2 0.2152 27 0.0469 

N= 10 µ 0.0137 1.4 0.2469 24.7 0.0611 6.1 0.0066 0.7 0.1449 15 0.0210 
T=50 /J -0.006 -0.6 0.3480 34.8 0.1211 12.1 -0.001 -0.1 0.1709 17 0.0292 

a 0.0050 0.5 0.2479 25 0.0615 
r, 0.0079 1.0 0.1378 17 0.0190 

N= 10 µ 0.0052 0.5 0.1688 16.9 0.0285 2.9 0.0015 0.2 0.1047 11 0.0110 
T= 100 /J -0.009 -0.9 0.2355 23.6 0.0556 5.6 -0.006 -0.6 0.1242 12 0.0155 

a 0.0004 0.0 0.1710 17 0.0293 
r, 0.0033 0.4 0.1026 13 0.0105 

N=20 µ 0.0008 0.1 0.3260 32.6 0.1063 10.6 0.0039 0.4 0.2126 21 0.0452 
T= 20 /J 0.0112 1.1 0.3640 36.4 0.1326 13.3 -0.006 -0.6 0.1965 20 0.0387 

a 0.0019 0.2 0.4157 42 0.1728 
Y, 0.0301 3.8 0.1811 23 0.0337 

N=20 µ 0.0091 0.9 0.2228 22.3 0.0497 5.0 0.0037 0.4 0.1375 14 0.0189 
T=50 /J -0.007 -0.7 0.2344 23.4 0.0550 5.5 -0.001 -0.1 0.1171 12 0.0137 

a 0.0079 0.8 0.2545 26 0.0649 
Y, 0.0055 0.7 0.1252 16 0.0157 

N=20 µ 0.0103 1.0 0.1455 14.5 0.0213 2.1 0.0074 0.7 0.0915 9.1 0.0084 
T= 100 /J -0.001 -0.1 0.1834 18.3 0.0336 3.4 0.0017 0.2 0.0939 9.4 0.0088 

a -0.006 -0.6 0.1644 16 0.0271 
r, -0.001 -0.1 0.0851 11 0.0072 
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(%) 

7.7 
16 
20 
8.9 
2.9 
6.1 
7.5 
4.0 
1.8 
3.3 
3.6 
1.9 
5.9 
8.9 
17 

5.9 
2.1 
2.9 
6.1 
2.4 
1.1 
1.5 
2.9 
1.3 
4.5 
3.9 
17 

4.2 
1.9 
1.4 
6.5 
2.0 
0.8 
0.9 
2.7 
0.9 



Sample 

N=5 
T=20 

N=5 
T=50 

N=5 
T= 100 

N= 10 
T=20 

N= 10 
T= 50 

N= 10 
T= 100 

N=20 
T=20 

N=20 
T=50 

N=20 
T= 100 
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TABLEA4: 
Monte Carlo results for static mean pool VECH model with cross-sectionalcorrelation and 

ARCH ( 1) errors in variance and covariance when cross-sectional correlation is ignored 
(Y1 = Q.8,p1 = 0.5) 

OLS MLE 
Coeff Bias (%) Std. (%) MSE (%) Bias (%) Std. (%) MSE 

Dev. Dev. 
µ -0.003 -0.3 0.5083 50.8 0.2583 25.8 -0.012 -1.2 0.2979 30 0.0889 

/3 0.0203 2.0 0.8010 80.1 0.6420 64.2 0.0333 3.3 0.4078 41 0.1674 
a 0.0279 2.8 0.4978 50 0.2485 
Y, -0.003 -0.4 0.3239 41 0.1049 
µ 0.0018 0.2 0.3340 33.4 0.1115 11.2 -0.007 -0.7 0.1778 18 0.0316 

/3 0.0052 0.5 0.4939 49.4 0.2440 24.4 0.0087 0.9 0.2473 25 0.0613 
a -0.012 -1.2 0.2833 28 0.0804 
Y, -0.004 -0.5 0.2059 26 0.0424 
µ 0.0119 1.2 0.2333 23.3 0.0546 5.5 0.0057 0.6 0.1222 12 0.0150 

/3 -0.014 -1.4 0.3332 33.3 0.1113 11.1 -0.001 -0.1 0.1608 16 0.0259 
a 0.0052 0.5 0.1955 20 0.0382 
Y, -0.006 -0.7 0.1458 18 0.0213 
µ 0.0197 2.0 0.4193 41.9 0.1762 17.6 0.0045 0.4 0.2533 25 0.0642 
/3 -0.021 -2.1 0.5354 53.5 0.2871 28.7 -0.018 -1.8 0.2742 27 0.0755 
a 0.0096 1.0 0.4523 45 0.2047 
Y, 0.0236 2.9 0.2700 34 0.0735 
µ -0.003 -0.3 0.2724 27.2 0.0742 7.4 -0.003 -0.2 0.1550 16 0.0240 
/3 0.0068 0.7 0.3336 33.4 0.1114 11.1 0.0103 1.0 0.1750 18 0.0307 
a -0.003 -0.3 0.2562 26 0.0656 
Y, -0.008 -1.0 0.1845 23 0.0341 
µ 0.0090 0.9 0.1891 18.9 0.0358 3.6 -0.002 -0.2 0.1103 11 0.0122 
/3 -0.011 -I.I 0.2450 24.5 0.0602 6.0 -0.002 -0.2 0.1263 13 0.0160 
a -0.011 -1.1 0.1892 19 0.0359 
Y, -0.000 0.0 0.1343 17 0.0180 
µ 0.0194 1.9 0.3523 35.2 0.1245 12.4 0.0146 1.5 0.2222 22 0.0496 
/3 -0.002 -0.2 0.3856 38.6 0.1487 14.9 -0.006 -0.6 0.1830 18 0.0335 
a 0.0053 0.5 0.4112 41 0.1691 
Y, -0.001 -0.1 0.2490 31 0.0620 
µ 0.0068 0.7 0.2313 23.1 0.0535 5.4 0.0059 0.6 0.1429 14 0.0205 
/3 -0.004 -0.3 0.2361 23.6 0.0558 5.6 -0.005 -0.5 0.1170 12 0.0137 
a 0.0018 0.2 0.2597 26 0.0674 
Y, -0.002 -0.3 0.1667 21 0.0278 
µ 0.0024 0.2 0.1691 16.9 0.0286 2.9 0.0009 0.1 0.1021 10 0.0104 
/3 -0.002 -0.2 0.1705 17.1 0.0291 2.9 -0.001 -0.1 0.0852 9 0.0073 
a 0.0035 0.3 0.1860 19 0.0346 
y -0.008 -1.0 0.1270 16 0.0162 
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(%) 

8.9 
17 
25 
13 

3.2 
6.1 
8.0 
5.3 
1.5 
2.6 
3.8 
2.7 
6.4 
7.6 
21 
9.2 
2.4 
3.1 
6.6 
4.3 
1.2 
1.6 
3.6 
2.3 
5.0 
3.4 
17 

7.8 
2.0 
1.4 
6.7 
3.5 
1.0 
0.7 
3.5 
2.0 
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