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Abstract 

 
In this paper we use a non cooperative equilibrium selection approach as a 
notion of stability in link formation games. Specifically, we first extend the 
global games literature, originally introduced by Carlsson and van Damme 
(1993), generalizing an important uniqueness result to a broader class of 
games: games with vector valued space of actions. Then we apply this result 
to study the robustness of the set of Nash equilibria for a class of link 
formation games in strategic form with supermodular payoff functions. 
Interestingly, the equilibrium selected is in conflict with those predicted by the 
traditional cooperative refinements. Moreover, we find a conflict between 
stability and efficiency even when no such conflict exists with the cooperative 
refinements. We discuss some practical issues that these different theoretical 
approaches raise in reality. 
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Resumen 

 
En este artículo introducimos un esquema no cooperativo de selección de 
equilibrios como una noción de estabilidad en juegos de formación de redes. 
Específicamente, extendemos primero un resultado de la literatura de juegos 
globales, originalmente introducida por Carlson y van Damme (1993), 
generalizando un importante resultado de unicidad a una clase más amplia de 
juegos: juegos con espacios de acciones multidimensionales. Luego aplicamos 
este resultado al estudio de cuán robusto es el conjunto de equilibrios de Nash 
a la introducción de información incompleta en una clase particular de juegos 
estáticos de formación de redes. La característica distintiva de esta clase es 
que las funciones de pago son supermodulares. Un resultado interesante es 
que se selecciona un sólo equilibrio que está en conflicto con aquellos 
predichos por los refinamientos cooperativos tradicionales. Además, 
encontramos un conflicto entre estabilidad y eficiencia aun cuando tal conflicto 
no existe si se usan los refinamientos cooperativos. Discutimos también 
algunas implicaciones prácticas asociadas a estas diferencias.  
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1 Introduction

The way that different agents interact has an important role in the outcome of many

problems in economics and other social sciences. Recently, these interactions have

been modeled using network structures or graphs, where the agents are represented by

nodes and the arcs between nodes represent some specific kind of relation between the

corresponding agents. This approach has proved to be successful in the study of many

specific problems;1 however, we do not have a unique and accepted theory to explain

how the networks form, which properties they have in terms of social welfare, and how

robust some results are in specific environments when some of the assumptions are

slightly modified. It is well known in the literature that, in general, a link formation

game in strategic form can lead to the formation of multiple networks supported

by multiple Nash equilibria. Even more, under some particular circumstances, any

network can be supported by a Nash equilibrium of the game.2 The use of traditional

refinements is limited and depends on the details of the game, consequently, some

stability notions have been used in order to refine the set of equilibria.

The stability notions used so far to refine the set of Nash equilibria in a link

formation game have been based on cooperative game theory. The most prominent of

them, from the strongest to the weakest, have been Strong Nash Equilibrium (SNE),

Coalition Proof Nash Equilibrium (CPNE) and Pairwise Stability (PS). However,

the applicability of these refinements lies critically on the feasibility of cooperation

among agents. This assumptions may be too strong for a link formation game when,

by definition, the network has not been formed.3

1For an excelent review of the main issues in network theory see Dutta and Jackson (2001) and
Jackson (2001).

2See, for example, Slikker and van den Nouweland (2000).
3The feasibility of cooperation seems more appealing once the network has been formed and the

agents interact among them.
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In this paper we use a non cooperative4 equilibrium selection approach as a no-

tion of stability in link formation games. Specifically, we follow the Global Games

approach pioneered by Carlsson and van Damme (1993),5 to study the robustness of

the set of Nash equilibria for a class of link formation games with supermodular payoff

functions. In order to illustrate this approach, let us suppose that Gx is a standard

game of complete information where the payoffs depend on a parameter x ∈ IR, and
also suppose that for some subset of the parameter x, Gx has a strict Nash equilib-

rium. Rather than observing the parameter x, suppose instead that each player payoff

function depends on a private value xi = x+σεi where σ > 0 is a scale factor and εi is

an i.i.d. random variable with density φ. Note that under this structure xi contains

diffuse information about other players’ private values. Denote this “perturbed game”

by Gx(σ), and let NE(Gx) and BNE(Gx(σ)) denote the sets of Nash and Bayesian

Nash equilibria of the unperturbed and perturbed games, respectively. Equilibrium

selection is obtained when, conditional on x, the actions determined by the strategies

in limσ→0BNE(Gx(σ)) are included in NE(Gx). Carlsson and van Damme (1993)

show, in fact, that for two-player, two-action games, this limit comprises a single

equilibrium profile, and is obtained through iterated deletion of strictly dominated

strategies. Recently these results have been extended by Frankel, Morris and Pauzner

(2002) for games with many players and many actions, but it is limited to the case

of games with strategic complementarities and where the action space is a compact

subset of the real numbers. Even though these authors obtain a quite general result,

it cannot be applied to games where agents’ strategies are vector valued. For exam-

ple when agents interact in networks, they have to decide whether to form bilateral

4The non cooperative formation of networks has been studied in the literature by Bala and Goyal
(2000), however, their approach is very different from ours, because the non cooperative notion in
that paper is related with the possibility of establishing links unilaterally, without the agreement
of the partner. On the contrary, our model comes from the tradition that the existence of a link
requires both parties to agree.

5For an excellent description and survey of the ensuing literature see Morris and Shin (2002).
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relationships, so they have to make use of a vector valued set of action.6

In this sense, our paper extends an important uniqueness result in the global

games literature to a more general class of games, games with vector valued space

of actions where each component of the agents’ strategy vector represents a binary

decision. Even though the application to a link formation game is very natural, our

extension can be applied to other problems beyond the network literature. Therefore,

in particular, this binary decision can be seen as player’s intention of establishing a

link with other player, thus a link will be formed if and only if both players want to

form the link.

We study a general class of games where the link formation process follows the

strategic form of Dutta, van den Nouweland, and Tijs (1998),7 such that if the payoff

is parametrized by x, our main assumptions are: 1. Increasing Differences: player

i’s incentive to choose a higher action is non decreasing in the others players’ action

profile. 2. Proportional Incentive to Deviate: player i’s incentive to deviate from

the lowest possible vector of actions depends on the number of links requested by the

player but not on the specific deviation. 3. Existence of upper and lower dominance

regions: for sufficiently low (high) values of the parameter, the action vector that

represents link intention with nobody (everybody) is strictly dominant.

Under these assumptions, and some technical requirements, we prove that there

exists a unique equilibrium profile surviving iterated elimination of strictly dominated

strategies. The profile selected is independent of the noise size. The equilibrium

strategy defines a unique k∗ such that ∀xi < k∗ each player chooses the action vector

6It is important to note that the global game structure allows either for games with private or
common values, ie. the payoff either depends on xi or x. The Carlsson and van Damme (1993) results
are independent of this structure because of the simplicity of the interaction space (2 × 2 game),
but when we study a more general situation (more players or actions) the result may depend on the
payoff structure. For details see Morris and Shin (2002).

7The strategic form approach of the link formation game was first proposed by Myerson (1991).
The idea is that each player selects a list of the other players he wants to form a link with. Then
the lists are put together and if the link ij is required by both parts, then it is formed.
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showing link intention with no other players, and ∀xi > k∗ each player chooses the

action vector showing link intention with all the other players.

In the limit when σ → 0 the selected Bayesian Nash profile is in conflict with those

arising from the application of traditional cooperative refinements of the network

literature: SNE, CPNE and PS. This difference shows that the cooperative notions

of stability are not robust to incomplete information in the form we introduce it.

Moreover, we show that the stability notions based on cooperative refinements do

not conflict with efficiency in our class of payoff functions, however, the equilibrium

selected under the global games approach does conflict. These differences raise some

practical questions about which criteria should be satisfied by networks that form in

reality.

>From an applied point of view, the paper highlights the importance of two stan-

dard assumptions in the link formation literature. First, the assumption of complete

information can be the origin of the multiplicity of networks supported by Nash Equi-

libria in link formation games. This multiplicity disappears when we perturb the game

introducing incomplete information. Second, the cooperative refinements have been

used to both, refine the multiplicity of equilibria in a link formation game and to ar-

gue that an existing network is stable to some cooperative deviations. However, the

possibility of cooperation among coalitions of agents seems to be a more demanding

assumption when the network is in formation than when the agents are maintaining

or modifying an existing network. These observations raise some doubts about which

is the pertinent equilibrium selection criteria in reality for a link formation game.

The paper is organized as follows. In section 2 we provide a simple example where

we can show intuitively the main findings of the paper. Section 3 presents how we

extend the global games literature generalizing the global games result to a class of

games with vector valued action space. Section 4 contains the main results related to

our class of link formation games. Here we develop the analysis using the cooperative
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refinements and our alternative approach to equilibrium selection, the global games

results obtained in section 3. The main conclusions are contained in section 5. Finally,

the proofs of propositions are relegated to the appendix.

2 An Illustrative Example

The idea of this section is to provide a simple example and an intuitive explanation

of one of the main results developed in the paper. We are not going to be formal and

technical details are postponed to next sections.

Consider a static link formation game of complete information G with three

players, where the set of strategies for each player i is given by Ai = {0, 1}2 . A
strategy for player i is a two component column vector of zeros and ones which iden-

tifies the set of players he wants to form links with. The players simultaneously

choose strategies and a link between two players will be formed if and only if both

of them want to form the link. For example, if the strategies of the players are

ai = (aij = 1, aik = 1), aj = (aji = 0, ajk = 1), ak = (aki = 0, akj = 1), then only the

link jk is created.8 The payoff function for player i is defined by:

πi = aijaji (x+ ajkakjβx) + (αx− c)aij + aikaki (x+ akjajkβx) + (αx− c)aik (1)

The variable x defines a level of profits which is assumed to be non negative, and

c is a fixed parameter that represents a level of investment incurred by agent i for

each link he wants to form. This investment is quasi specific to the partners, in the

sense that if agent i incurs an investment to agent j, then even if j does not perform

the reciprocal investment, and consequently the link ij is not formed, agent i receives

8Just for simplicity we wrote strategy ai as a row vector. In general we should see ai as column
vector and any profile a as a matrix. We will be more formal in the following sections.
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a return (αx− c). The source of benefits αx is independent of other players’ actions,

in the sense that it can be obtained no matter the strategies the other players are

following. On the other hand, if j also performs the quasi specific investment to i

then the return to agent i increases to (x+αx− c). In other words, there is an extra

direct benefit x from connection with each potential partner. Finally, agent i profits

from the relation between j and k when they are connected and provided that i is

connected with at least one of them. Note that if i is connected with both of them,

this indirect benefit is duplicated. For example, in the complete network the total

payoff for player i is given by πi = 2[x (1 + α+ β) − c]. In this sense, βx represent

an indirect benefit or spillover that agent i is able to extract from the connection

between his partners and their partners. It seems natural to assume that 0 < α < 1,

0 < β < 1, because we are scaling the benefits in relation to those obtained from

reciprocity (x).

One case where this kind of payoff function can be justified is in investment in

R&D to reduce variable costs. In such a case, it has been empirically documented (see

Goyal and Moraga-Gonzalez (2001)) that the firms tend to form alliances in pairs,

represented by the links, but any reduction in cost obtained by i’s partners can be

imitated by i, no matter if such reduction was obtained due to R&D of i’s partner or

by a partner of i’s partners. We can assume that these firms are not competitors in

any final market, so no negative externalities from R&D will arise.

2.1 The Nash Equilibria

Given the symmetry of the problem we are going to consider the best response cor-

respondence for player 1. This correspondence, and the Nash equilibria arising, are

different depending on the values of x. Figure 1 provides a summary of the different

network structures supported by Nash equilibria, NE(G), for different values of x.
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Consider the following cases:

Case (a): Suppose that:

c

1 + α
< x <

c

α

then the best response correspondence is given by:

BR1(a−1) =



a12 = 1, a13 = 1 if a21 = a31 = 1

a12 = 1, a13 = 0 if a21 = 1, a31 = 0

a12 = 0, a13 = 1 if a21 = 0, a31 = 1

a12 = 0, a13 = 0 if a21 = 0, a31 = 0

Note that, in this region, the strategies of agents 2 and 3 in relation to their

connection does not affect the best response correspondence of agent 1. The intuition

is that direct connections are enough to guarantee profitability. This characteristic

leads to a multiplicity of Nash equilibria and, even more, it is possible to prove that all

the feasible networks among the three agents can be supported by a Nash equilibrium.

Case (b): Suppose that:

c

1 + α+ β
< x <

c

1 + α

then the best response correspondence is given by:

BR1(a−1) =



a12 = 1, a13 = 1 if a21 = a31 = a23 = a32 = 1

a12 = 1, a13 = 0 if a21 = a23 = a32 = 1, a31 = 0

a12 = 0, a13 = 1 if a21 = 0, a31 = a23 = a32 = 1

a12 = 0, a13 = 0 otherwise
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Figure 1: Network Structures supported by Nash Equilibria

Note that, in this case, the best response correspondence of player 1 is affected

by the existence of the link between players 2 and 3. It is possible to prove that

in this case only the empty and the complete network can be supported as a Nash

equilibrium of the game.

Case (c): Finally, when x < x = c/(1+α+β) a dominant strategy for any player

i is to play ai = (0, 0) ≡ 0. Analogously, when x > x = c/α a dominant strategy is to

form links with all the other players ai = (1, 1) ≡ 1, leading to the complete network.

2.2 Equilibrium Selection using Cooperative Refinements

A strategy profile is called a Strong Nash Equilibrium (SNE) if it is a Nash equilib-

rium and there is no coalition of players that can strictly increase the payoffs of all

its members using a joint deviation (Aumann (1959)). On the other hand, a strategy

profile is called a Coalition Proof Nash Equilibrium (CPNE) if, as in an SNE, no

coalition can deviate to a profile that strictly improves the payoffs of all the players

in the coalition. However, in the CPNE the set of admissible deviations is smaller,

because the deviation has to be stable with respect to further deviations by subcoali-

tions. Finally, a network is Pairwise Stable (PS) if no pair of agents has incentives to
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form or sever one link.9

The application of these cooperative refinements to our three players game G

is very direct and a summary of results for the network supported by SNE(G),

CPNE(G) and PS(G) is given in figure 2.

First, it is possible to prove that, in this particular example, SNE(G) coincides

with CPNE(G). Second, the analysis has to be performed in separated areas. It

is easy to see that the strategy profile a = (0,0,0) ≡ [0] is a SNE(G) when x <

c/(1+α+β), because for this range of values each agent plays 0 as a dominant strategy

and, consequently, no coalition of agents can improve upon.10 On the other hand,

a = (1,1,1) ≡ [1] is a SNE(G) when c/(1 + α + β) < x. The intuition is that the

grand coalition playing ai = aj = ak = 1 (which is a Nash equilibrium) can improve

upon any other strategy profile (Nash equilibrium or not) given the complementarities

involved in the payoff functions and the fact that a positive payoff is guaranteed.

We have to be more careful in the analysis of pairwise stability. If c/(1+α+β) <

x < c/(1 + α) then the empty and the complete networks are pairwise stable and

consequently, pairwise stability does not refine the set of Nash equilibria. This result

is a consequence that for these low values of x the indirect connections are needed to

make any connection profitable so, if nobody is making links, an agreement of two

players to form a link is not enough to obtain a profitable relationship. On the other

hand, if everybody is making links then no pair of agents benefits from severing a link.

When c/(1+α) < x < c/α any pair of agents which are not connected can profitably

make a link and, consequently, only the complete network is pairwise stable. Finally,

9This concept has been defined directly over networks instead of strategy profiles (see Jackson and
Wolinsky (1996)). In what follows we constraint the application of it to networks already supported
by a Nash equilibrium. In this sense we consider Pairwise Stability as a refinement of the set of
Nash equilibria. See the Appendix for a formal discussion.
10In what follows [0] and [1] represents a matrix full of zeros or ones respectively. The dimension-

ality is given by the profile they are representing. For example, in this three players case, a = [0] is
a 2x3 matrix of zeros representing a complete strategy profile and a−i = [0] is a 2x2 matrix of zeros
representing a strategy profile that excludes player i’s strategy.
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Figure 2: Network structures supported by Strong Nash Equilibrium (SNE), Coalition
Proof Nash Equilibrium (CPNE) and Pairwise Stability (PS).

if x < c/(1 + α + β) then action ai = 0 is a dominant strategy for player i and the

unique pairwise stable network is the empty one. Analogously, if x > c/α then action

ai = 1 is a dominant strategy and the unique pairwise stable network is the complete

one.

2.3 Equilibrium Selection using the Global Games Approach

Suppose now we allow some arbitrary amount of incomplete information in the payoff

structure such that player i’s payoff function depends on a private value xi, which

is observed by i and contains diffuse information about x. The private value has

the following structure: xi = x + σεi, where σ > 0 is a scale factor, x is drawn

from
£
X,X

¤
with uniform density and εi is an independent realization of the density

φ with support in [−1
2
, 1
2
]. We assume εi is i.i.d. across the individuals.11

In this context of incomplete information, a Bayesian pure strategy for player i is

a function si : [X − σ
2
,X + σ

2
] → Ai, and s = (s1, s2, s3) is a pure strategy profile,

where si ∈ Si. Calling this game of incomplete information G(σ), let us define as

11Note that φ need not be symmetric around the mean nor even have zero mean. Also note that
xi contains diffuse information about player j’s private value: xj .
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BNE(G(σ)) the set of Bayesian Nash equilibria of G(σ).

Proposition 1: ∀ σ > 0 there exists a unique strategy profile s∗, that survives

iterated elimination of strictly dominated strategies, where:

s∗i (xi) =

 1 if xi > k∗

0 if xi < k∗
∀i and k∗ =

4c

2 + 4α+ β

Since the noise structure is xi = x + σεi, as σ → 0 xi → x, thus the unique

equilibrium selected implies that ∀ x < k∗ all agents play the action 0, so the empty

network is formed, and ∀ x > k∗ all the agents playing action 1 and, consequently,

the complete network is formed. Conditional on the private value, figure 3 shows the

networks supported by this equilibrium as the noise goes to zero.

This proposition is a particular case of proposition 2, so we are not going to

give a formal proof here. Instead, we are going to discuss the intuition behind the

proposition. Consider players 2 and 3 using any strategy. It is common knowledge

of the game that these strategies must consider playing the actions 0 and 1 in the

previously identified dominance regions. It is possible to prove that agent 1’s best

response to such strategies is a strategy that considers playing 0 when x1 < x1 and

playing 1 when x1 > x1 where x < x1 and x > x1. In other words, in equilibrium,

the regions where 0 and 1 are played has been extended. Given the symmetry of the

problem, all the agents perform the same analysis and consequently the regions where

0 and 1 are played are extended symmetrically for all the players. Iterating with this

argument, it is possible to generate increasing and decreasing sequences {xn}∞n=1 and
{xn}∞n=1, respectively, such that they have the same limit value, i.e., x∞ = x∞ ≡ k∗.

Finally, it is important to notice that the equilibrium profile selected in G(σ)

does not depend on the size of the noise. In this sense, we say that s∗ is the unique

12
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Figure 3: Equilibrium Selected using the Global Game Approach

equilibrium of the link formation gameG, which is stable to the way how we introduce

incomplete information in the parameter x.

2.4 Efficient Allocation of the Game

The efficient allocation of the game E(G), is defined for each x as the strategy profile

that maximizes the sum of the payoffs for the players. It is easy to check that:

E(G) =

 {[0]} if x < c/(1 + α+ β)

{[1]} if x > c/(1 + α+ β)

and as a result, the networks supported by efficient allocation E(G) coincide with

those supported by the sets SNE(G) and CPNE(G) described in figure 2.

2.5 Discussion

The example developed illustrate the main results of the paper. First, the traditional

cooperative refinements do not conflict with the efficient allocation for each level of x.

However, the equilibrium selected using the global games approach clearly conflicts

with efficiency when c
1+α+β

< x < 4c
2+4α+β

. Second, in the interval c
1+α

< x < 4c
2+4α+β

13



all the cooperative refinements predict the formation of the complete network, how-

ever, our selected equilibrium predicts the empty network. This means that, for these

values of x, it is impossible to satisfy the two stability conditions simultaneously.

Giving that each stability notion leads to the selection of a different equilibrium, we

have two implications. First, the cooperative refinements are not robust to our in-

complete information structure. Second, the feasibility of the equilibrium selected

by each approach depends critically on the feasibility of the deviations considered in

each stability condition. For example, if the game presents a coordination problem,

then it does not seem reasonable to select the equilibrium using cooperative refine-

ments, which ignore the coordination problem itself. In such a case, the global games

approach could be more adequate. In the particular case of our link formation game

(previously studied by Dutta, van den Nouweland and Tijs (1998)), the game is essen-

tially non cooperative12 and there exists a coordination problem. If, in addition, we

consider a supermodular payoff function as in (1), then the cooperative refinements

should not conflict with efficiency, because the agents can coordinate actions in the

grand coalition, leading to the efficient allocation of the game.

In what follows we are going to show that these findings hold in a much more

general setting. We will keep the strategic form approach proposed by Myerson

(1991) and studied by Dutta et al. (1998), but we extend our results to a family of

payoff functions that satisfies a set of assumptions. Our first step will be to expand

the applicability of Global Games theory in order to use it in a class of link formation

games.

12We do not see any reason to assume in advance that cooperation is possible.
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3 Global games with strategic complementarities and vector valued set

of actions

In this section we extend the global games literature generalizing the global games

result to a class of games with vector valued action space. We present a more general

set up than a link formation game, where the dimension of the strategy vector does

not coincide necessarily with the number of opponents.13 Using standard assumptions

of the global games literature and an additional specific assumption about the vector

valued strategies we extend the literature finding a uniqueness result: the class of

games analyzed have a unique equilibrium strategy profile obtained through iterated

elimination of strictly dominated strategies. Later, in section 4, we will use this result

and other refinements to analyze in detail the special case of link formation games.

Let us consider the following general setup for a I person game Γ. There exists I

players indexed by i, each player has aN−dimensional set of strategiesAi = {0, 1}N .14
Then a strategy ai for player i is a column vector of zeros and ones, i.e. ai ∈ Ai, and

an element of ai is aki ∈ {0, 1} where i ∈ {1, ..., I}and k ∈ {1, ..., N}.
For simplicity we will assume symmetric players with a payoff function given by

π(ai, a−i, x) where ai ∈ Ai, a−i ∈ A−i = ×j 6=iAj,
15 and x ∈ [X,X] ⊂ IR is an

exogenous variable. We define ∆π(ai, a
0
i; a−i, x) = π(ai, a−i, x)−π(a0i, a−i, x) as agent

13In a general class of link formation games, players have to decide whether to connect, or to form
a link, with each of his "opponents". Under this view, naturally each player’s strategy is a vector,
where each component is a binary decision and the vector dimension corresponds to the number of
his opponents.
14Note that when N = I − 1, we can interpret Γ as a link formation game, where every player has

to decide whether to form a link with the rest of the players. Naturally, each player has I− 1 binary
decisions to make, so the player’s strategy is a vector of I − 1 dimension.
15Ai is a partially ordered set:
ai ≥ bai if aji ≥baji ∀j = 1...N
ai > bai if aji ≥baji ∀j = 1...N and aji >baji for some j.
In the same way A−i is a partially ordered set:
a−i ≥ ba−i if ∀j 6= i aj ≥baj
a−i > ba−i if ∀j 6= i aj ≥baj and aj >baj for some j.
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i’s payoff difference when he changes from action a0i to action ai. We also define

A = Ai ×A−i.

Define An
i ⊂ Ai such that, if ai ∈ An

i then ai is N-dimensional column vector

which contain n components 1 and N − n components 0. In fact, the family of sets

{An
i }Nn=0 defines a partition of Ai because Ai =

N∪
n=0

An
i and An

i ∩ An0
i = ∅ for all n

and n0 ∈ {0...N} with n 6= n0. Additionally, it is easy to see that AN
i and A0i are

singleton, therefore if ai ∈ AN
i then ai is a column of ones, which we denote as ai ≡ 1

and it is defined as the highest action vector. Equivalently, if ai ∈ A0i then ai is a

column of zeros, denoted by ai ≡ 0 and it is defined as the lowest action vector. If
ai ∈ {1,0} ⊂ Ai, then ai is an homogenous action vector, and Ah

i ≡ A0i ∪ AN
i =

{1,0} is defined as players i’ set of homogenous actions.
Similarly consider Ah

−i = ×j 6=iAh
j and define A

h,l
−i such that if Ml is an element of

Ah,l
−i, then Ml is N × (I − 1) matrix containing l columns 1 and (I − 1)− l columns

0. As we consider above, the family of sets
n
Ah,l
−i
oI−1
l=0

is a partition of Ah
−i because

Ah
−i =

I−1∪
l=0

Ah,l
−i and A

h,l
−i∩Ah,l0

−i = ∅ for all l and l0 ∈ {0...I − 1} with l 6= l0. In particular

MI−1 = [1] is a N × (I − 1) matrix of ones, and M0 = [0] is a N × (I − 1) matrix of
zeros.

Let us consider the following assumptions in the payoff structure:

(A1). Increasing Differences (ID). Conditional on the value of the exogenous

parameter x, the greater the other players’ action profile the greater is player i’s

incentive to choose a higher action:

∀ai ∈ Ai and ∀a−i ∈ A−i

If ai ≥ a0i and a−i ≥ a0−i, ∆π(ai, a
0
i; a−i, x) ≥ ∆π(ai, a

0
i; a

0
−i, x) ∀x

Moreover:

a. ∀ai 6= 0, ∃a−i 6= [1] ∈ Ah
−i s.t.:

∆π(ai,0; a−i, x) < ∆π(ai,0; [1] , x) ∀x
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b. ∀ai 6= 1, ∃a−i 6= [0] ∈ Ah
−i s.t.:

∆π(1, ai; a−i, x) > ∆π(1, ai; [0] , x) ∀x

(A2). Continuity (C).

π(ai, a−i, x) is a continuous function in x

(A3). Monotonicity (M). The greater the value of the exogenous parameter

x, the greater is player i’s incentive to choose a higher action:

∃ c > 0 s.t. ∀ ai > a0i ∀ a−i and x, x0 ∈ [X,X] x > x0

∆π(ai, a
0
i; a−i, x)−∆π(ai, a

0
i; a−i, x

0) > c kai − a0ik (x− x0)

(A4). Proportional Incentive to Deviate (PID). If the players other than

i are randomizing with equal probability among homogeneous actions such that a

fixed number of highest actions is played, then the (expected) value of the incentive

of agent i to deviate from the homogenous action 0 to any other action ai varies

proportionally with the elemental deviation, the deviation to any strategy that has

just one component equal to 1:

∃ λ : Ai → [0,∞) satisfying λ(0) = 0 and λ(ai) = 1 ∀ai ∈ A1i , s.t. if ai ∈ An
i and

a0i ∈ An0
i , then:

λ(ai) > λ(a0i) ⇔ n > n0,

λ(ai) = λ(a0i) ⇔ n = n0

And ∀ai ∈ AiP
a−i∈ Ah,l−i

∆π(ai,0; a−i, x) = λ(ai)
P

a−i∈ Ah,l
−i
∆π(a0i,0; a−i, x) ∀l = 0, ..., I − 1 ∀a0i

∈ A1i

(A5). Upper and Lower Indifference Values (IV). If all other players are

choosing the highest (lowest) action, there exists a unique value of x such that player

i is indifferent between the lowest (highest) action and any other action.

∀ai ∈ Ai\0, ∃! x > X s.t. ∆π(ai,0; a−i = [1] , x) = 0, and
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∀ai ∈ Ai\1, ∃! x s.t. X > x > x and ∆π(1, ai; a−i = [0] , x) = 0.

Assumption 5 says that for each ai ∈ Ai the values x and x exist and they are

unique. In principle, however, they could depend on ai. The following lemma shows

that this is not the case.

Lemma 1: The indiference values x and x in assumption 5 are independent of

ai ∈ Ai.

An aditional important remark is that assumptions A1 (ID), A3 (M) and A5 (IV)

provide sufficient conditions for the existence of dominance regions, along which each

action is strictly dominant, providing this setup with the necessary global games

structure. i.e.

∀x < x, ∆π(ai,0; a−i, x) < 0 ∀a ∈ A, and

∀x > x, ∆π(1, ai; a−i, x) > 0 ∀a ∈ A

Suppose now that the game is one of incomplete information in the payoff struc-

ture. Player i’ payoff function depends now on a private value xi instead of x. These

values are, however, related so that xi also constitutes a noisy signal of x observed by

player i. 16

Each player’ value has the following structure: xi = x+σεi ,where σ > 0 is a scale

factor, x is drawn from the interval [X,X] with uniform density, and εi is a random

variable distributed according to a continuous density φ with support in the interval

[−1
2
, 1
2
]. We assume εi is i.i.d. across the individuals.

This general noise structure has been used in the global games literature, allowing

us to model in a simple way the conditional distribution of the opponents value given

16It is possible to model the private values case as a limit of the common value case (when players
derive utility from the actual value of the variable x and the xi’s are pure signals of x) as the noise
goes to zero (σ → 0). We do not pursue this approach in our paper but it has been used in the global
game literature (Carlsson and van Damme (1993), Morris and Shin (2002) and Frankel, Morris and
Pauzner (2002)).
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a player’s own value. The conditional distribution of an opponent’s value xj given

the own value xi admits a continuous density fσ and a cdf Fσ with support in the

interval [xi− σ, xi+σ]. Moreover this literature establishes a significant result: when

the prior is uniform, players’ posterior beliefs about the difference between their own

value and other players’ values are the same, i.e. Fσ(xi | xj) = 1− Fσ(xj | xi).17
In this context of incomplete information, a Bayesian pure strategy for a player

i is a function si : [X − σ
2
,X + σ

2
] → Ai, and s = (s1, s2, ..., sI) is a pure strategy

profile, where si ∈ Si. Equivalently we define s−i = (s1, s2, ..si−1, si+1, ...sI) ∈ S−i.

In particular, a switching strategy between the lowest and the highest action is a

Bayesian pure strategy satisfying : ∃ ki s.t.

si(xi) =

 1 if xi > ki

0 if xi < ki

Abusing notation, we write si(·; ki) to denote the switching strategy with threshold
ki.

Finally, if player i has a private value xi and facing a strategy s−i his expected

payoff can be written as

Πi(ai, s−i, xi | xi) =
Z
x−i

π(ai, s−i(x−i), xi)dFσ(−i)(x−i | xi)

Calling this game of incomplete information Γ(σ), let us define BNE(Γ(σ)) as the

set of Bayesian Nash equilibria of Γ(σ). In addition, we assume:

(A6). Single Crossing (SC). There exists a unique value k∗, of the exogenous

variable such that if player i has a value xi = k∗ and he believes that all other players

are using a switching strategy between 0 and 1 with threshold k∗, the expected value

17This property holds approximately when x is not distributed with uniform density but σ is
small, i.e. F (xi | xj) ≈ 1− F (xj | xi). See details in Lemma 4.1 Carlsson and van Damme (1993).
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of his payoffs when he chooses 0 or 1 are the same, i.e.:

There exists a unique k∗ solving
I−1X
n=0

X
a−i∈ Ah,n

−i

{∆π(1,0; a−i, k∗)} = 0

One of the main results of the paper proves that Γ(σ) has a unique profile s∗,

played in equilibrium ∀σ > 0, and in this profile every player will play a switching

strategy si(·; k∗) with k∗ according A6 (SC).

Proposition 2: Consider the game Γ(σ). Under assumptions A1 to A6:

∀ σ > 0 there exists a unique strategy profile s∗ surviving iterated elimination of

strictly dominated strategies, where:

s∗i (xi; k
∗) =

 1 if xi > k∗

0 if xi < k∗
∀i and x < k∗ < x

This result extends the global games literature. With Proposition 2 we make

available an important uniqueness result to a more general class of games with vector

valued space of actions. For example, we could study the foreign investment decisions

of I investors in N different countries in the presence of investment complementarities

or the decision to enter in N new research areas by I researchers in the presence of

synergies. In this paper we will use the result to analyze a link formation game

where each player decides to request or not a link with the other players and then the

dimension of the action space is equal to the number of other players, i.e. N = I − 1.

4 Stability and Equilibrium Selection in a Class of Link Formation Games

In this section we go back to the link formation game in strategic form and we refine

the set of Nash equilibria using different equilibrium selection approaches. In sub-
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section 4.1 we describe the general link formation game under analysis, in particular,

we discuss the assumptions required over the payoff structure for applying our global

games generalization developed in section 3. In subsection 4.2 we apply cooperative

refinements to the game while in 4.3 we use our equilibrium selection approach. In

4.4 we briefly discuss an application.

Several authors have studied the theoretical foundations of network formation

and its properties (Myerson (1977), Aumann and Myerson (1988), Dutta, van den

Nouweland and Tijs (1998), Slikker and van den Nouweland (2000) among others).

Particular emphasis has been given to study the link formation process and the conflict

between stability and efficiency in networks (Jackson and Wolinsky (1996), Dutta and

Mutuswami (1997)). The link formation literature precedes the stability/efficiency

literature, however, the insights from the latter area have interacted and motivated

more research in the former.

In this paper we focus on the link formation game in strategic form of Dutta,

van den Nouweland and Tijs (1998) but we introduce a different, non cooperative,

equilibrium selection approach. Our approach is in fact based on a different stability

notion and consequently, we can analyze the properties of the selected equilibria and

compare them with those obtained from the cooperative results. We also discuss the

traditional stability/efficiency conflict when our stability notion is being used.

4.1 The Link Formation Game

We will consider a general class of link formation game G having the same structure

of the class of games analyzed in the previous section. In particular, since G is a link

formation game, the dimension of the strategy vector will coincide with the number

of players minus one (the dimension of the strategy vector is equal to the number of

opponents or N = I − 1).
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For simplicity we assume that there exists N + 1 players indexed by i and each

player has a set of strategies Ai = {0, 1}N . In this context, a strategy for player i is a
column vector of zeros and ones which identify the set of players he wants to form links

with. The players simultaneously choose strategies and a link between two of them

will be formed if and only if both players want to form the link. For example, if players’

strategies are such that a0i = (..., aji = 1, aki = 1, ...), a
0
j = (..., aij = 0, akj = 1, ...),

a0k = (..., aik = 0, ajk = 1, ...), then the link jk is created.
18

We assume symmetric players with a payoff function given by π(ai, a−i, x) where

ai ∈ Ai, a−i ∈ A−i = ×j 6=iAj, and x ∈ [X,X] ⊂ IR is an exogenous variable. We

define∆π(ai, a
0
i; a−i, x) = π(ai, a−i, x)−π(a0i, a−i, x) as agent i’s payoff difference when

he changes from action a0i to action ai.

The set of assumptions over the payoff function were formally defined in section

3. In the particular case of a link formation game, the assumptions can be interpreted

using a network language as follows:

(A1). Increasing Differences (ID). The more connected is the network formed

by players other than i, the higher the incentive of player i to choose a vector of

actions that permit him to be more connected with the rest of the network. There

exists scenarios where the incentive is strict, for example, the incentive could be strict

if the strategies of the players implies an increase in the number of direct links between

player i and the rest of the network.

(A2). Continuity (C). The payoff function is continuous in the parameter of

benefits x.
18We consider the strategy ai as a N dimension column vector. In what follows we identify the

k component of ai with the link intention of player i toward player k and we denote it aki which is
a slightly different notation from the one used in section 2 (we inverted the order of k and i). We
need this notation because we are going to attach different column vectors to form strategy profiles
and we want to use a more standard matricial notation. In addition, in this interpretation aii does
not play any role and then it is ommited from ai.
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(A3). Monotonicity (M). Conditional on the strategies played by other agents,

the greater the benefits of being connected the highest the incentive for player i to

request the formation of links with other players.

(A4). Proportional Incentive to Deviate (PID). If the players other than

i are randomizing, with equal probabilities, among homogenous actions such that a

fixed number of them is connected, then the (expected) value of the incentive for

player i to deviate from a homogenous action 0 to any other action ai is proportional

to the (expected) value of the incentive to deviate to an action involving just one link

intention.19 The proportionality coefficient increases in the number of links requested

by player i in the strategy ai.

(A5). Upper and Lower Indifference Values (IV). Consider a given action

ai for player i. There exists a sufficiently low value for the parameter of benefit such

that, even if all the other players are requesting links with everybody else, player i

is indifferent between actions ai and 0. Analogously, there exists a sufficiently high

value for the parameter of benefit such that, even if all the other players are not

requesting links at all, player i is indifferent between actions ai and 1.

4.2 Equilibrium Selection using Cooperative Refinements

In this section we are interested in applying some of the most commonly used sta-

bility concepts to our problem in order to refine the multiplicity of Nash equilibria

that can arise in our game. Three concepts have been proposed: Pairwise Stable

Nash Equilibrium (PS), Coalition Proof Nash Equilibrium (CPNE) and Strong Nash

Equilibrium (SNE). A formal definition of the first concept is in the Appendix, while

the other two can be revised in Dutta and Mutuswami (1997).

19This notion can be related to the idea of anonimity in the network literature. The identity of
the players with whom agent i is requesting a link in ai does not matter. The number of requests,
however, is important.
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It has been proved that,20 for a general link formation game Γ under complete

information21:

SNE(Γ) ⊆ PS(Γ) ⊆ NE(Γ) (2)

SNE(Γ) ⊆ CPNE(Γ) ⊆ NE(Γ)

On the other hand, the set of Efficient Allocations of a game Γ, E(Γ), is defined

as:

E(Γ) = {a∗ ∈ A, such that a∗ ∈ argmax
a

X
i∈N

ui(a)} (3)

An important implication of the theoretical conflict between efficiency and sta-

bility is that, in general, E(Γ) * PS(Γ) and E(Γ) * CPNE(Γ).22 We are going to

show that this is not the case in our game.

Consider the link formation game in strategic form G defined at the begining of

section 4 and satisfying the assumptions A1 to A5. In addition, we introduce the

following assumption:

(A7). Status Quo Payoff (SQP)

π(0, a−i, x) = 0 ∀a−i ∈ A−i , ∀x ∈ [X,X]

This assumption is very natural in the sense that if agent i does not require any

link, then he has neither benefits nor costs. The role of assumption A7 (SQP) is to

permit us to write ∆π(ai,0; a−i, x) = π(ai, a−i, x) so that all the assumptions over

∆π can be directly interpreted in terms of π.

20See Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997).
21Even when Pairwise Stability has been defined over graphs, we can talk about the set PS(Γ) as

the subset of Nash Equilibria leading to the formation of pairwise stable graphs. See the Appendix
for a formal definition.
22See Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997), respectively.
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Under this general set of assumptions it is not easy to give a detailed description

of the set of Nash equilibria of the game G. However, it is possible to show that some

particular profiles are indeed Nash Equilibria, and even more, we can show that these

equilibria are stable under the traditional cooperative refinements. In addition, we

will show that the set E(G) is always stable under the different cooperative notions.

Proposition 3: Consider the link formation game G. Under assumptions A1 to

A5 and A7 we have:

a. The set E(G), satisfies:

E(G) =

 {[0]} if x < x

{[1]} if x > x

b. If a ∈ E(G) then a is stable under all the cooperative refinements.

Proposition 3 shows that in the class of supermodular games defined in section 4

under assumptions A1 to A5 and A7 there is no conflict between efficiency and the

cooperative notions of stability.

4.3 Equilibrium Selection using the Global Games Approach

Now we follow the global games approach to study equilibrium selection process in

G. Basically, we introduce some arbitrary amount of incomplete information in the

payoff structure such that player ís payoff function depends on a private value xi,

which is observed by i and contains diffuse information about x. The value follows

the standard global games structure, which was described in detail previosly. The

interpretation of (A6) in the link formation game is the following:

(A6). Single Crossing (SC). If the players other than i are randomizing among

homogenous actions with equal probabilities then there exist a unique value for the
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parameter of benefits k∗, such that player i’s expected payoff from playing 0 (none

link is requested) or 1 (all links are requested) is the same.

In this context of incomplete information we call the game G(σ) and define as

BNE(G(σ)) the set of Bayesian Nash equilibria of G(σ).

Since in section 3 we have proved a general uniqueness result, we use our propo-

sition 2 to show that G(σ) have a unique equilibrium strategy profile.

Corollary of proposition 2: Consider the link formation game G(σ). Under

assumptions A1 to A6:

∀ σ > 0 there exists a unique strategy profile s∗ surviving iterated elimination of

strictly dominated strategies, where:

s∗i (xi; k
∗) =

 1 if xi > k∗

0 if xi < k∗
∀i and x < k∗ < x

The equilibrium strategy defines a unique k∗ according to assumption A6. This

threshold satisfies that ∀xi < k∗ each player chooses the action vector that shows link

intention with no other players, and ∀xi > k∗ each player choose the action vector

that shows link intention with all the other players. It is important to notice that the

equilibrium profile selected does not depend on the size of the noise σ, and it does

not depend on the noise structure φ either. We have assumed that the parameter

x is distributed according to a flat prior, but it is possible to prove that any prior

can be treated as a flat prior when σ goes to zero. In this sense, we say that s∗ is the

unique equilibrium of the link formation game G, which is robust to our incomplete

information structure in the parameter x.

Even though the proposition proves that when σ > 0 each player is using a

switching strategy s∗i , the network formed depends on the size of the noise. In

26



general, if some xi > k∗ + σ then every player receives a value greater than k∗ and

therefore the complete network is formed. Equivalently if some xi < k∗ − σ the

empty network is formed, but if all xi ∈ [k∗ − σ, k∗ + σ] then any network can be

formed depending on the realization of each player’s value. Following this analysis is

easy to see that as σ goes to zero just two possibilities remain, the complete and the

empty network.

The corollary establishes a significant result in the link formation literature. Com-

paring Proposition 3 and the corollary, we can see that the actions played in limσ→0BNE(G(σ))

are not efficient (k∗ > x) and thus there is a conflict between efficiency and stability,

when the later is understood as stability to the introduction of incomplete information

with our structure. This conflict does not arise when the cooperative stability notions

are considered. More importantly, as the example in section 2 illustrates, cooperative

and non cooperative notions of stability could not be satisfied simultaneously for some

range of the parameter of profits x, and then we are forced to decide which approach

is more pertinent to refine the set of Nash equilibria in link formation games. Given

that the link formation game under analysis is non cooperative in nature and a coordi-

nation problem exists, it seems more reasonable to use a non cooperative equilibrium

selection approach instead of assuming ex-ante the possibility of cooperation among

agents.

4.4 Application

One question that need to be answered is how difficult is to check the set of assump-

tions in particular applications. In this subsection we consider an extension of the

three players game discussed in section 2 and we show that all the assumptions can

be checked directly.

Consider the link formation game G with N +1 player, such that each player has
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the same following payoff function:23

πi(ai, a−i, x) =
X
j 6=i

(
aijaji

Ã
x+

X
k 6=i6=j

ajkakjβx

!
+ (αx− c)aji

)
(4)

which is a generalization of the payoff function described in equation (1). The

interpretation of the different components of this function (independent, direct and

indirect benefits) is the same as in section 2.

It is clear that the game played is different depending on the values of x. In

particular, when x(1 + α + β) < c a dominant strategy for any agent i is to play

ai = 0 ∀i ∈ {1, ..., N + 1}, forming the empty network. On the other hand, when
αx > c, then a dominant strategy is to play ai = 1 ∀i ∈ {1, ..., N + 1}, forming the
complete network.

Assumptions A1 to A5 and A7 can be checked easily. Assumption A6 is verified

in the following Lemma.24

Lemma 2: Consider the link formation game G when the payoff function has been

specialized according to (4). The Single Crossing assumption A6 is satisfied with:

k∗ =

Nc
PN

n=0

 N

n


PN

n=0

 N

n

Nα+

(1 + β)
PN

n=0


 N

n

n

−Nβ

 (5)

Lemma 2 permits us to apply the equilibrium selection by the global games ap-

proach to the payoff function defined by (4). The equilibrium selected generalizes the

result discussed in section 2.
23We are using the notation introduced in section 3, which is slightly different from section 2.

Under this notation aji represents the link intention of agent i with respect to agent j.
24The proof of Lemma 2 is available from the authors upon request.
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5 Conclusion

The goal of this paper was to use a non cooperative equilibrium selection approach as

a notion of stability in link formation games. Specifically, we studied the link forma-

tion game in strategic form of Dutta, van den Nouweland and Tijs (1998) where we

constrained the payoffs to a class of supermodular functions defined by assumptions

A1 to A5. Assumption A6 (SC) was introduced to apply the global games approach

and assumption A7 (SQP) was introduced to apply the traditional cooperative refine-

ments.

Our methodology is based on the global games theory, where the equilibrium selec-

tion is obtained through perturbations by allowing some arbitrarily small uncertainty

in the payoff structure. Interestingly, the equilibrium selected with our stability con-

cept was not only different, but also conflicts with those predicted by the traditional

cooperative refinements. As a consequence, a first insight of this paper was to show

that the equilibria selected under the cooperative notions of stability are not robust

to the incomplete information structure considered.

In Proposition 3 we showed that the set of strategy profiles leading to efficient

allocations is contained in the set of stable equilibria when the stability notions are

cooperative. In other words, in our link formation game when the payoff functions

belong to our class of supermodular functions, we do not have a conflict between

stability and efficiency when cooperative refinements are used. On the contrary,

from the Corollary of Proposition 2, we found that the conflict appears when our

equilibrium selection technique is used.

>From an applied point of view, the paper highlights the importance of two stan-

dard assumptions in the link formation literature. First, the assumption of complete

information can be the origin of the multiplicity of networks supported by Nash Equi-

libria in link formation games. This multiplicity disappears in our environment under
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incomplete information because, from Proposition 2, there is a unique strategy pro-

file that survives the iterative elimination of strictly dominated strategies and so any

additional refinement is meaningless. Second, the possibility of cooperation among

coalitions of agents seems to be a strong assumption in a link formation game, spe-

cially in the presence of coordination problems. This observation, and the conflict

between the equilibria selected under a cooperative and a global games approach,

raise some doubts about which criteria is satisfied by the forming networks in reality.

In the three player example discussed in section 2, in the interval c
1+α

< x <

4c
2+4α+β

, all the cooperative refinements predict the formation of the complete net-

work; however, our approach predicts the formation of the empty network. In partic-

ular, pairwise stability implies that a pair of agents can be strictly better off if they

cooperate, however the strategies required to support this behavior do not survive

the iterated elimination of strictly dominated strategies under any level of incomplete

information in the parameter x.

The conflict between efficiency and stability in networks under the global games

approach does not come as a surprise.25 In fact Carlson and van Damme (1996)

considered a 2×2 coordination game where the risk dominant equilibrium selected is

not necessarily efficient. In this paper we extend the same kind of conclusion to a

link formation game with N +1 players. On the other hand, the conflict between the

equilibria selected under the cooperative refinements and the Global Games approach

is originated in the use of different, and sometimes conflicting, stability concepts. The

question here is which one seems more reasonable for link formation games. The use

of cooperative refinements in games with strategic complementarities in the presence

of a coordination problem is equivalent to ignoring the coordination problem itself.

Our non cooperative approach then constitutes a feasible alternative.

In terms of future research, there are several important issues that remains open.

25We thank to both anonymous referees for pointed out this issue.
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For example, the class of fuctions where the global games approach can be applied is

still narrow, especially because of assumption 1. We are studying how to relax this

assumption in order to make the key results of the paper available to a bigger class of

payoff functions. The role of symmetry in the payoff structure under complete infor-

mation should also be analyzed, especially when the parameter of benefits becomes

agent specific. Finally, we should also study the effect of introducing a dynamic di-

mension to the model. By doing this, we will be able to study entry and exit decisions

in a market characterized by network interactions.

6 Appendix

Definition

Pairwise Stable Nash Equilibria (PS)

The concept of pairwise stability is due to Jackson and Wolinsky (1996) and it

is directly defined over the networks, independently of the link formation process. It

says that the network will be pairwise stable when each pair of agents do not have

incentives to add or sever a link. It is clear from the definition of our game that adding

a link requires both parties to agree, but any agent can sever a link unilaterally.

In our game, however, we need to use a variant of the original definition which

depends directly over strategies (rather than networks).

Formally, let G = (N , {Ai}i∈N , {πi}i∈N ) denote our link formation game in
strategic form (defined in section 4.1). Define Eij as a N × (N + 1) matrix of zeros,

except the ij element which is 1. We say that a strategy profile a∗ ∈ A =
N+1×
i=1

Ai is a

Pairwise Stable Equilibrium (PS) of the game G iff a∗ ∈ NE(G) and:

(i) If the link ij exists then players i and j do not benefit if the link is broken.

Formally, for all i, j such that [a∗]ij [a
∗]ji = 1,

26 we have:

26The notation [a∗]ij refers to the ij element of the matrix a
∗. In other words, it refers to the link
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πi(a
∗) ≥Max {πi(a∗ −Eij), πi(a

∗ − Eij − Eji)} and,

πj(a
∗) ≥Max {πj(a∗ −Eji), πj(a

∗ − Eji − Eij)}
(ii) If the link ij does not exist then if one player benefits from the existence

of the link then the other is damaged. Formally, for all i, j such that [a∗]ij [a
∗]ji = 0,

if πi(a∗) < πi(a
∗ +Eij(1− [a∗]ij) +Eji(1− [a∗]ji))

then πj(a
∗) > πj(a

∗ +Eij(1− [a∗]ij) +Eji(1− [a∗]ji))
The connection between the two definitions of pairwise stability is direct: the set

of Pairwise Stable Nash Equilibria of the game, PS(Γ), corresponds to the subset of

Nash equilibria leading to Pairwise Stable networks.

Proof of Lemma 1:

Let us first prove the lemma for x. Consider ai, a∗i ∈ Ai\0 and x ∈ [X,X]. From

A4 and l = I − 1 we know that
∆π(ai,0; a−i = [1] , x) = λ(ai)∆π(a0i,0; a−i, x) ∀a0i ∈ A1i

∆π(a∗i ,0; a−i = [1] , x) = λ(a∗i )∆π(a0i,0; a−i, x) ∀a0i ∈ A1i

which implies ∆π(ai,0; a−i = [1] , x) =
λ(ai)
λ(a∗i )

∆π(a∗i ,0; a−i = [1] , x)

where by A4 λ(ai) 6= 0 and λ(a∗i ) 6= 0. Thus, if x satisfies ∆π(ai,0; a−i = [1] , x) =

0 then ∆π(a∗i ,0; a−i = [1] , x) = 0.

Let us now prove for x. Consider ai, a∗i ∈ Ai\1 and x ∈ [X,X]. In general we can

write:

∆π(1, ai; a−i, x) = ∆π(1,0; a−i, x)−∆π(ai,0; a−i, x)

from A4 and l = 0

∆π(1,0; a−i, x) = λ(1)∆π(a0i,0; [0] , x) ∀a0i ∈ A1i

∆π(ai,0; [0] , x) = λ(ai)∆π(a0i,0; [0] , x) ∀a0i ∈ A1i

then

intention of player j with player i.
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∆π(1, ai; a−i = [1], x) = (λ(1) − λ(ai))∆π(a0i,0; [0] , x) ∀a0i ∈ A1i and analo-

gously

∆π(1, a∗i ; a−i = [1], x) = (λ(1)− λ(a∗i ))∆π(a0i,0; [0] , x) ∀a0i ∈ A1i

Since by A4 (λ(1)− λ(ai)) 6= 0 and (λ(1)− λ(a∗i )) 6= 0 we conclude as above.

Proof of Proposition 2

Denoting St
i the player i’s set of strategies that survives t rounds of deletion of

interim strictly dominated strategies, the process of iterated elimination is defined

recursively as follows: set S0i ≡ Si and for all t > 0

St
i ≡

 si ∈ St−1
i : @s0i ∈ St−1

i s.t. Π(s
0
i(xi), s−i, xi | xi) ≥ Π(si(xi), s−i, xi | xi) ∀xi

and with strict inequality for somexi, ∀s−i ∈ St−1
−i


Consider a link formation game G(σ). Under assumptions A1 to A6, we will argue

by induction that set St
i satisfies:

St
i = {si : si(xi) = 0 if xi < xt and si(xi) = 1 if xi > xt} ,
where xt and xt are defined recursively as

xt=max {x : ∆Π(1,0; (sj(xj;x
t−1))j 6=i, x) = 0}

xt=min {x : ∆Π(1,0; (sj(xj;x
t−1))j 6=i, x) = 0}

The first round of elimination is described in the following lemma.

Lemma 3: For all i ∃ x1 > x and x1 < x s.t.

si ∈ S1i iff si(xi) = {0 if xi < x1 and 1 if xi > x1}
where

x1=max {x : ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}

x1=min {x : ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}
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proof . Starting from the left: Player i (henceforth Pi) observes xi = x, from A1

(ID), if si is a best response to a profile where every player is choosing a switching

strategy sj(·;x) ∀j 6= i, it will be a best response to any s−i ∈ S0−i. Then player

i’ expected payoff difference between choosing action ai rather than action 0 can be

written as

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
Z
x−i

∆π(ai,0; sj(xj;x))j 6=i, x)dFσ(−i)(x−i | xi)

or equivalently by

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
X

a−i∈ Ah−i

∆π(ai,0; a−i, x) Pr(a−i | (sj(xj;x))j 6=i, x)

where in general Pr(a−i | (s−i, x) represent player i’ beliefs about the action profile
a−i conditional on other players’ strategy s−i.

Now, since, ∀σ > 0, ∀a−i ∈ Ah
−i, Pr(a−i | (sj(xj;x))j 6=i, x) = 1

2I−1 > 0, then

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
1

2I−1
X

a−i∈ Ah
−i

∆π(ai,0; a−i, x)

By assumptions A1 (ID) and A5 (IV) ∀ai ∈ Ai, ∀a−i ∈ Ah
−i ∆π(ai,0; a−i, x) ≤

0. By assumption A1 (ID) part a, at least one element is strictly negative, then

∆Π(ai,0; (sj(xj;x))j 6=i, x) < 0. Therefore Pi, upon observing xi = x, will play action

ai = 0.

Now, if Pi receive a value xi = x+ σ

∆Π(ai,0; (sj(xj;x))j 6=i, x+ σ) = ∆π(ai,0; s−i = [1] , xi = x+ σ)

By assumption A3 (M) ∆π(ai,0; [1] , x + σ) > ∆π(ai,0; [1] , xi = x), and by
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assumptions A5 (IV) ∆π(ai,0; [1] , xi = x) = 0. Then ∆π(ai,0; [1] , xi = x+ σ) > 0.

Given continuity of the expected utility function and using the intermediate value

theorem:

∀ai 6= 0 and ∀σ > 0, ∃ x1 s.t x < x1 < x+σ, where x1 = min {x | equation (6) holds}

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
X

a−i∈ Ah−i

∆π(ai,0; a−i, x) Pr(a−i | (sj(xj;x))j 6=i, x) = 0

(6)

Following an equivalent argument of Lemma 1, let us now prove that any x such

equation (6) holds is independent of ai (in particular it will be true for x1) :

Since
P

a−i∈ Ah
−i
=
PI−1

l=0

P
a−i∈ Ah,l−i

. we can re-write equation 6 asPI−1
l=0

P
a−i∈ Ah,l

−i
∆π(ai,0; a−i, x) Pr(a−i | (sj(xj;x))j 6=i, x) = 0

but Pr(a−i | (sj(xj;x))j 6=i, x) just depend on l soPI−1
l=0 Pr(a−i | (sj(xj;x))j 6=i, x)

P
a−i∈ Ah,l

−i
∆π(ai,0; a−i, x) = 0.

>From A4 we know thatP
a−i∈ Ah,l−i

∆π(ai,0; a−i, x) = λ(ai)
P

a−i∈ Ah,l
−i
∆π(a0i,0; a−i, x) ∀l = 0, ..., I − 1 ∀a0i

∈ A1i

thenPI−1
l=0 Pr(a−i | (sj(xj;x))j 6=i, x)[λ(ai)

P
a−i∈ Ah,l−i

∆π(a0i,0; a−i, x)] = 0

which can be written as

λ(ai)[
PI−1

l=0 Pr(a−i | (sj(xj;x))j 6=i, x)
P

a−i∈ Ah,l−i
∆π(a0i,0; a−i, x)] = 0

then any x such equation (6) holds is independent of ai.

Now we know that x1 is independent of ai. Then in particular if ai = 1

x1 = min {x | ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}

Starting from the right and using an equivalent argument we conclude that:
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∀ai 6= 1 and ∀σ > 0, ∃ x1 s.t x > x1 > x−σ, where x1 = max {x | equation (7) holds}

∆Π(1, ai; (sj(xj;x))j 6=i, x) =
X

a−i∈ Ah−i

∆π(1, ai; a−i, x) Pr(a−i | (sj(xj;x))j 6=i, x) = 0

(7)

Since x1 is independent of ai, then in particular if ai = 0

x1 = max {x | ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}¥Lemma 3

Repeating the process described in lemma 3, it is easy to prove by induction that

∃ xt > xt−1 and xt < xt−1 s.t.

St
i = {si : si(xi) = 0 if xi < xt and si(xi) = 1 if xi > xt}
where

xt=max
©
x : ∆Π(1,0; (sj(xj;x

t−1))j 6=i, x) = 0
ª

xt=min
©
x : ∆Π(1,0; (sj(xj;x

t−1))j 6=i, x) = 0
ª

This process generates an increasing sequence {xt} and a decreasing sequence
{xt} . Let us suppose there exists limit points x∞ and x∞, then from equation (6) ∀ai

X
a−i∈ Ah

−i

∆π(ai,0; a−i, x∞) Pr(a−i | (sj(xj;x∞))j 6=i, x∞) = 0

Since Pr(a−i | (sj(xj;x∞))j 6=i, x∞) = 1
2I−1 , then

∆Π(ai,0; (sj(xj;x
∞))j 6=i, x∞) =

1

2I−1
X

a−i∈ Ah−i

∆π(ai,0; a−i, x∞) = 0
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By assumption A5 (IV), in particular, this is true for ai = 1, then

X
a−i∈ Ah

−i

∆π(1,0; a−i, x∞) = 0 (8)

Equivalently from equation (7), for the limit point x∞ we get

∆Π(1, ai; (sj(xj;x
∞))j 6=i, x∞) =

1

2I−1
X

a−i∈ Ah−i

∆π(1, ai; a−i, x∞) = 0

By assumption A5 (IV) this is in particular true for ai = 0, then

X
a−i∈ Ah

−i

∆π(1,0; a−i, x∞) = 0 (9)

Finally, it is easy to see that equations (8) and (9) are the same, and from as-

sumption A6 (SC) x∞ = x∞ = k∗. Then S∞ =
∞∩
t=0

St =
©
(si(xi; k

∗))Ii=1
ª
¥

Proof of Proposition 3

(b) First we have to prove that a = [0] and a = [1] are indeed Nash Equilibria of

the game when x < x and x > x respectively.

Consider first x > x and ai 6= 0, ai 6= 1. By A3 (M) we have:
∆π(ai,0; a−i = [1], x)−∆π(ai,0; a−i = [1], x) > c kai − 0k (x− x) > 0

and by A5 (IV) ∆π(ai,0; a−i = [1], x) = 0, so ∆π(ai,0; a−i = [1], x) > 0.

On the other hand, by A4 (PID) we have:

∆π(1,0; a−i = [1], x) =
λ(1)
λ(ai)

∆π(ai,0; a−i = [1], x) > ∆π(ai,0; a−i = [1], x)

Finally, using A7 (SQP), and the fact that the following inequality trivially holds

for ai = 0, we have:

π(1; a−i = [1], x) > π(ai; a−i = [1], x) ∀ai 6= 1, x > x. (10)
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In other words, when the others are playing a−i = [1], then play ai = 1 is a strict

best response. As a result, a = [1] is a strict NE of the game when x > x.

Now we are going to prove that a = [1] is a SNE of the game when x > x and then,

by relations in (2), it is an stable equilibria under all the cooperative refinements.

We are going to prove that:

π(1; [1], x) ≥ π(ai; a−i, x) ∀ x > x, ∀a ∈ A, a 6= [1]
which is a condition that implies that the strategy profile a = [1] is a Strong Nash

Equilibrium (SNE).

Consider any a ∈ A, a 6= [1] and any x > x. By A1 (ID) and A7 (SQP) we have:

π(ai; a−i, x) = ∆π(ai,0; a−i, x) ≤ ∆π(ai,0; [1], x) = π(ai; [1], x)

and using equation (10) we have:

π(ai; [1], x) ≤ π(1; [1], x)

which completes the proof that a = [1] is a SNE of the game when x > x.

Now we analyze the case x < x. In this case, the strategy ai = 0 is a strictly

dominant strategy for player i because ∀ai 6= 0 and ∀a−i ∈ A−i, by A1 (ID), A3 (M)

and A5 (IV) we have:

∆π(ai,0; a−i, x) ≤ ∆π(ai,0; a−i = [1], x) < ∆π(ai,0; a−i = [1], x) = 0

and using A7 (SQP):

π(ai; a−i, x) < 0 = π(0; a−i, x)

In particular, considering a−i = [0], we obtain that a = [0] is a strict NE of the

game when x < x.

Moreover, given any strategy profile a 6= [0] (not necessarily a Nash equilibrium)
and any x < x we have:

π(0; a−i = [0], x) ≥ π(ai; a−i, x) and then a = [0] is a SNE of the game.

Finally, when x = x, the strategy profiles a = [0] and a = [1] lead to a payoff

zero (by assumptions A7 (SQP) and A5 (IV) respectively), and using A1 (ID) and

A5 (IV), for any strategy profile a ∈ A:
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π(ai; a−i, x) ≤ π(1; a−i = [1], x) = 0

As a consequence there is no profitable deviation for player i from a = [0] or

a = [1], so these profiles are Nash Equilibria. Using the same assumptions, there is

no other profile where all the players in a coalition can obtain a positive payoff and,

consequently, these profiles are also Strong Nash Equilibria. Moreover, if there exists

any other efficient strategy profile under x = x, the payoff for any player i would be

zero and then, it would also be a SNE of the game.

(a) By definition, the set of Efficient Allocations of the game G is given by the

strategy profiles that solves:

max
a∈A

N+1X
i=1

πi(ai; a−i, x)

>From the proof of part (b), we know that, when x > x the strategy profile a = [1]

is a Nash equilibrium satisfying:

πi(1; [1], x) ≥ πi(ai; a−i, x) ∀ x > x , a 6= [1], i = 1...N + 1

But if the strategy profile a 6= [1] then there exists j so that aj 6= 1 and for this
agent, using A7 (SQP), A1 (ID) and A4 (PID) we have:

πj(aj; a−j, x) ≤ πj(aj; [1], x) < πj(1; [1], x) ∀ x > x

and then the unique Efficient Allocation when x > x is given by the strategy

profile a = [1].

An analogous argument leads us to prove that the unique Efficient Allocation

when x < x is given by the strategy profile a = [0].¥
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