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Abstract 

Despite the significant growth of macroeconomic and financial empirical 
panel studies the modeling of time dependent variance-covariance 
processes has not yet been addressed in the panel data literature. In this 
paper we specify a model that accounts for conditional heteroskedasticity 
and cross-sectional dependence within a typical panel data framework. We 
apply the model to a panel of monthly inflation rates of the G7 countries 
over the period 1978.2-2003.9 and find significant and quite persistent 
patterns of volatility and cross-sectional dependence. We then use the 
model to test two hypotheses about the interrelationship between inflation 
and inflation uncertainty, finding no support for the hypothesis that higher 
inflation uncertainty produces higher average inflation rates and strong 
support for the hypothesis that higher inflation is less predictable. 

 

Resumen 

No obstante el enorme crecimiento de estudios empíricos sobre temas 
macroeconómicos y financieros con datos panel, la modelación de procesos 
de varianza-covarianza cambiantes en el tiempo aún no ha sido tratada en 
la literatura de modelos panel. En este artículo modelamos 
heterocedasticidad condicional y correlación de corte transversal dentro de 
un modelo panel típico. El modelo es aplicado a un panel de inflación 
mensual de los países del G7 durante el periodo 1978.2-2003.9 
encontrándose patrones de volatilidad y correlación de corte transversal 
significativos y altamente persistentes. El modelo es también utilizado para 
evaluar dos hipótesis sobre la interrelación entre inflación e incertidumbre 
inflacionaria, encontrándose fuerte evidencia a favor de la hipótesis de que 
inflaciones altas son menos predecibles, pero ninguna evidencia que 
respalde la hipótesis de que mayores niveles de incertidumbre inflacionaria 
conlleven a tasas de inflación mas altas. 
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Introduction 

The empirical panel data literature on financial and macroeconomic issues has 
grown considerably in the few past years. A recent search of ECONLIT using 
the keyword phrases “financial panel data” and “macroeconomic panel data” 
produced 687 and 309 hits respectively.1 While it is well known that most 
financial and macroeconomic time series data are conditionally 
heteroskedastic, rendering traditional estimators consistent, but inefficient, 
this rapidly growing literature has not yet addressed the issue. On the other 
hand, sophisticated multivariate GARCH models already are in wide use but 
they are confined to a time series context.2 

 In this paper we specify a panel model that accounts for conditional 
heteroskedasticity and cross-sectional correlation. The model is used to 
characterize the patterns of volatility and cross-sectional dependence of 
inflation in the G7 countries and to evaluate the hypotheses that (i) higher 
inflation uncertainty produces higher average inflation rates and (ii) higher 
inflation rates become less predictable. The main contribution of the paper is 
to account for a time dependent error covariance processes in panel models 
with fixed effects (dynamic or static), thus opening an avenue for empirical 
panel research of financial or macroeconomic volatility. 

 Although the volatility processes can be studied on an individual basis 
(i.e. country by country) using existing GARCH models (e.g. Engle, 1982, 
Bollerslev et al., 1988, and Bollerslev, 1990), panel modeling is still worth 
pursuing since taking into account the cross-sectional dependence will 
increase efficiency and provide potentially important information about 
patterns of cross-sectional dependence. 

 It is important to remark, though, that identification of time dependent 
variance-covariance processes in panel data is feasible as long as the cross-
sectional dimension N is relatively small since the number of covariance 
parameters will increase rapidly otherwise, which limits the applicability of 
the model to relatively small N and large T panels.3  

 The rest of the paper is organized as follows. In section 2 we formulate 
the basic panel model with conditional heteroskedastic and cross-sectionally 
correlated disturbances and briefly discuss some special cases and 
generalizations. Section 3 discusses the strategy that will be followed in order 
to determine the presence of time dependent variance-covariance processes 
and to specify a preliminary panel model with such effects. Section 4 provides 
the empirical results, characterizing volatility and cross-sectional dependence 
                                                 

1 Search conducted November 8, 2004. 
2 See Bollerslev et al., 1992 for a survey on ARCH models. For a comprehensive survey on multivariate GARCH 

models see Bauwens et al., 2003.  
3 Phillips and Sul (2003) point out this limitation in the context of heterogeneous panels with (unconditional) 

cross-sectional dependence. 
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in the G7 countries, as well as testing two hypotheses about the 
interrelationship between inflation and its predictability. Finally, section 5 
concludes. 
 

2. The Model 

Consider the following dynamic panel data (DPD) model with fixed effects:4 

itititiit uyy +++= − βx1φµ  Ni ,,1K= , Tt K,1=     (1) 
Where N and T are the number of cross sections and time periods 

respectively; ity  is the dependent variable, iµ  is an individual specific effect, 

which is assumed fixed, itx  is a row vector of exogenous explanatory variables 

of dimension k, and β  is a k by 1 vector of coefficients. We assume that the 

AR parameter satisfies the condition 1<φ  and that T is relatively large so 
that we can invoke consistency of the Least Squares estimators5. In the 

case 0=φ , the process given by equation (1) becomes static.6 The disturbance 

term itu  is assumed to have a zero mean normal distribution with the 
following conditional moments: 
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Assumption (iii) states that there is no autocorrelation while assumption 
(iv) disallows non-contemporaneous cross-sectional correlation.7 Assumptions 
(i) and (ii) define a very general conditional variance-covariance process; 
some structure needs to be imposed in order to make this process tractable. 
We propose the following specification which is an adaptation of the model in 
Bollerslev et al., 1988.  

2
1,

2
1,

2
−− ++= titiiit uγδσασ   Ni ...1=      (3) 

                                                 
4 This class of models is widely known in the panel data literature. See Baltagi (2001) and Hsiao (2003) for details. 
5 For dynamic models with fixed effects and i.i.d. errors, it is well known that the LSDV estimator is downward 

biased in small T samples. See, for example, Kiviet (1995). 
6 It is worth emphasizing that we are only considering the case of stationary panels. In practice, we will have to 

assure that all variables are indeed stationary or I (0). 
7 Ruling out autocorrelation might be a restrictive assumption but it is convenient because of its simplicity. In 

practice, we will need to make sure that this assumption is not violated.  
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1,1,1, −−− ++= tjtitijijijt uuρλσησ  ji ≠       (4) 

The model defined by equations (1) (conditional mean), (3) (conditional 
variance) and (4) (conditional covariance) is simply a DPD model with 
conditional covariance. Thus, we can use the acronym DPDCCV.8 Modeling the 
conditional variance and covariance processes in this way is quite convenient 
in a panel data context since by imposing a common dynamics to each of 
them, the number of parameters is considerably reduced. In this case there 

are )4)1(
2
1( ++NN  parameters in the covariance matrix. It is important to 

emphasize that (3) and (4) imply that the conditional variance and covariance 
processes follow, respectively, a common dynamics but their actual values, 
however, are not identical for each unit or pair of units (conditionally or 
unconditionally). 

 It can be shown that the conditions  ,0>iα  ,1)( <+ γδ  and 1)( <+ ρλ  are 
sufficient for the conditional variance and covariance processes to converge 
to some fixed (positive in the case of the variance) values. However, in 
general there is no guarantee that the covariance matrix of disturbances be 
positive definite (at each point in time) and that it converges to some fixed 
positive definite matrix. Thus, assuming positive definiteness of the 
covariance matrix, the error structure of the model will reduce, 
unconditionally, to the well-known case of groupwise heteroskedasticity and 
cross-sectional correlation. 

 In matrix notation and assuming given initial values 0iy , equation (1) 
becomes 

ttt uθZµy ++=       Tt ,,1K=   (5) 

Where tt uy , , are vectors of dimension 1Nx . The matrix ][ 1 ttt XyZ M−=  has 
dimension )1( +KNx , µ  is a 1Nx  vector of individual specific effects, and 

]''[ βθ Mφ= is a conformable column vector of coefficients. Given our previous 
assumptions the N-dimensional vector of disturbances tu  will follow a zero-
mean multivariate normal distribution, denoted as ),(~ tt N Ω0u . The 
covariance matrix tΩ  is time dependent and its diagonal and off-diagonal 
elements are given by equations (3) and (4) respectively. The vector of 
observations ty  is therefore conditionally normally distributed with mean 
( θZµ t+ ) and variance-covariance matrix tΩ . That is, ),(~ ttt N ΩθZµy +  and 
its conditional density is 

                                                 
8 We should remark that equations (3) and (4) could have a more general GARCH (p,q) formulation. 
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Where ϕ  includes the parameters in equations (3) and (4). For the 
complete panel we have the following log-likelihood function:9 
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 This function is similar to those derived in the context of multivariate 
GARCH models (e.g., Bollerslev et al., 1988).10 It can be shown 
straightforwardly that if the disturbances are cross-sectionally independent 
the NxN  matrix tΩ  becomes diagonal and the log-likelihood function takes 
the simpler form: 

∑ ∑∑∑
= = =

−

=

−−−
−−−=

N

i

N

i

T

t it

ititiit
T

t
it

yyNTl
1 1 1

2

2
1

1

2

)(
)(

2
1))(ln(

2
1)2ln(

2 ϕσ
βφµ

ϕσπ
x

,  (8) 

 Further, in the absence of conditional heteroskedasticity and cross-
sectional correlation the model simply reduces to a typical DPD model. 

 Even though the LSDV estimator in equation (1) is still consistent it will no 
longer be efficient in the presence of conditional heteroskedastic and cross-
sectionally correlated errors, either conditionally or unconditionally. In this 
case, the proposed non-linear MLE estimator based upon (7) or (8) (depending 
on whether we have cross-sectionally correlated disturbances or not) will be 
appropriate. Note that, by using the MLE estimator we are able to obtain both 
the parameters of the conditional mean and conditional variance-covariance 
equations while the LSDV estimator will only be able to compute the 
coefficients in the mean equation. 

 It is well known that under regularity conditions the MLE estimator is 
consistent, asymptotically efficient and asymptotically normally distributed. 
Also it is known that these properties carry through when the observations are 
time dependent as is the case of multivariate GARCH processes. Therefore, 
the MLE estimator in (7) or (8) is asymptotically normally distributed with 
mean equal to the true parameter vector and a covariance matrix equal to 
the inverse of the corresponding information matrix. It is important to note 
that these asymptotic properties would hold for N fixed and T approaching to 
infinity since we are modeling the N-dimensional vector of disturbances of the 
panel as a multivariate time series process. 

                                                 
9 It should be remarked that the normality assumption may not hold in practice leading to Quasi-MLE estimation. 

See Davidson and McKinnon (1993) for a general discussion. Although this issue needs further investigation it is 
worth pointing out that Bollerslev and Wooldrige (1992) find that the finite sample biases in the QMLE appear to be 
relatively small in time series GARCH models. 

10 Also it is similar to the log likelihood function derived in the context of prediction error decomposition 
models for multivariate time series. See for example Brockwell and Davis (1991) and Harvey (1990). 
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 Estimation of the DPDCCV model will be made by direct maximization of 
the log likelihood function given by (7), using numerical methods.11 The 
asymptotic covariance matrix of the MLE estimator of this type will be 
approximated by the negative inverse of the Hessian of l  evaluated at MLE 
parameter estimates. It is important to remark that the total number of 
coefficients to be estimated depends on the squared cross-sectional 
dimension of the panel, 2N , which in practice suggests applying the model to 
relatively small N panels in order to make the estimation feasible and to 
retain the asymptotic properties, namely consistency and efficiency, of this 
estimator.12  

 In practice, the individual effects in the mean equation may not be 
significantly different from each other giving rise to a mean equation with a 
single intercept (often called “pooled regression model”). Also, it is possible 
that the conditional variance or covariance processes do not exhibit individual 
effects. A combination of these possibilities could occur as well. A completely 
heterogeneous panel with individual specific coefficients for all the 
parameters in the mean and variance-covariance equations can also be 
considered, although in this last case we can run into estimation problems 
given the considerably large number of parameters that will arise even if the 
number of cross sections is relatively small.  

 Finally, it is worth mentioning some alternative specifications for the 
variance and covariance processes along the lines of those developed in the 
multivariate GARCH literature. For example, a variation of equation (4) that 
specifies the analogous of the constant correlation model as in Bollerslev 
(1990) or its generalized version, the dynamic conditional correlation model, 
given in Engle (2002). Also, depending on the particular subject of study, 
exogenous regressors can be included in the variance equations as well as the 
variance itself can be included as a regressor in the conditional mean 
equation, as in multivariate M-GARCH-M models. 
 

3. Empirical Strategy 

Since the proposed DPDCCV models are non-linear and estimation by direct 
maximization of the log-likelihood can be tedious work, it may be helpful to 
make some preliminary identification of the most appropriate model. In what 
follows we outline an empirical methodology for this purpose although it 
should be remarked that it is only done in an informal way. 

                                                 
11 We use the GAUSS Optimization module. 
12 In this paper we only consider small values of N. Further work will focus on using existing multivariate GARCH 

two-step methods which allow consistent, although inefficient, estimation of a considerably large number of 
parameters as would be the case of larger N panels. See Engle (2002), and Ledoit, Santa-Clara and Wolf (2003). 
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 Two issues are fundamental in our empirical strategy: (i) Specifying the 
best model for the mean equation and (ii) Identifying conditional variance-
covariance processes in the panel. We consider that, provided there are a 
large enough number of time series observations so that we can rely on 
consistency of LS estimators, these issues can be addressed using conventional 
panel data estimation results as we discuss next.  

3.1 Specifying the mean equation 

An important issue in empirical panel work is the poolability of the data. In 
the context of equation (1) we need to determine whether there are 
individual specific effects or a single intercept.13 For this purpose we can test 
for individual effects in the mean equation using the LSDV estimator with a 
heteroskedasticity and autocorrelation consistent covariance matrix, along 
the lines of White (1980) and Newey and West (1987) estimators applied to 
panel.14 

 Under the assumption of cross-sectional independence, and for models 
where the variance process is identical across units, the LSDV and OLS 
estimators respectively are still best linear estimators. However if the 
variances are not equal across units the unconditional variance process will 
differ across units and the previous estimators will no longer be efficient. 
Given that we do not know a priori the appropriate model and that we may 
have auto correlation problems in practice, it seems convenient to use a 
covariance matrix robust to heteroskedasticity and autocorrelation. 
Specifically, we can test the null hypothesis NH µµµ === L210 :  by means of 

a Wald-test, which will follow a 2
)1( −Nχ  distribution asymptotically. 

3.2 Identifying conditional variance-covariance processes 

Once we have determined a preliminary model for the mean equation, we can 
explore the possibility of a time dependent pattern in the variance process by 
examining whether the squared LSDV or LS residuals (depending on whether 
individual specific effects are included or not in the mean equation) exhibit a 
significant autocorrelation pattern.15 Depending upon the number of 
significant partial autocorrelations obtained we can choose a preliminary 
order for the variance process. As a practical rule, we can consider an ARCH 

                                                 
13 From a much broader perspective, however, we need to determine if full heterogeneity or some form of 

pooling is more appropriate for the conditional mean equation. 
14 Arellano (1987) has extended White’s heteroskedasticity consistent covariance estimator to panel data but this 

estimator is not appropriate here since it has been formulated for small T and large N panels which is not our case. 
15 This argument is along the lines of Bollerslev (1986) who suggests examining the squared least squares residuals 

in order to determine the presence of ARCH effects in a time series context. 
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(1) process if only the first lag is significant, or a GARCH (1, 1) if more lags are 
significant. 

 A related important issue is to determine if there are individual effects in 
the variance process. This can be done by testing for individual effects in the 
AR regression of squared residuals. Complementarily, a test for unconditional 
groupwise heteroskedasticity (which can be done in a conventional way) can 
lead us to decide for individual effects in the variance process if the null 
hypothesis is rejected.  

 Next, we can carry out a conventional test for the null hypothesis of no 
cross-sectional correlation (unconditionally) which if not rejected will allow 
us to consider the simpler model under cross-sectional independence as a 
viable specification. Rejection of the previous hypothesis will indicate that 
the (unconditional) covariance matrix of the N vector of disturbances is not 
diagonal making it worth to explore a possible time dependent pattern of the 
covariance among each pair of units. This can be done in a similar way as 
outlined previously for the case of the variance. Specifically, we can examine 
if the cross products of LSDV or LS residuals show a significant autocorrelation 
pattern. The inclusion of pair specific effects in the covariance process can be 
decided after testing for individual effects in the AR regression of cross 
products of residuals. 

 We need to remark that the previous guidelines can be quite helpful to 
determine a preliminary specification of the model. However, in order to 
determine the most appropriate model we need to estimate a few alternative 
specifications via maximum likelihood and compare the results. At this point, 
it is important to make sure that all conditional heteroskedasticity has been 
captured in the estimation. We can accomplish this in two ways. First, we can 
add additional terms in the conditional variance equation and check for their 
significance. Second, we can test the squared normalized residuals for any 
autocorrelation pattern. If significant patterns remain, alternative 
specifications should be estimated and checked. 

 
 

4. Inflation and Inflation Uncertainty in the G7 countries 

Several studies have found using time series GARCH models that inflation 
uncertainty, measured by the estimated conditional variance, is a significant 
phenomenon in the G7 and other countries, and that it interacts in various 
ways with nominal or real variables.16 In this paper we attempt to 
characterize the conditional variance-covariance process of inflation in the G7 

                                                 
16 See, for example, Caporale and Caporale (2002), Apergis (1999) and Grier and Perry (1996, 1998, 2000) 

among others. It is also worth mentioning the seminal paper by Robert Engle (1982). 
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countries taken as a panel. We also evaluate the hypotheses that (i) higher 
inflation uncertainty increases average inflation and (ii) higher inflation rates 
become less predictable. We use monthly observations on inflation rates )(π  
during the period 1978.2 to 2003.9.17 

 Before proceeding, we evaluate the stationarity of the inflation process. 
In Table 1 we present time series as well as panel unit root tests for inflation. 
In all cases the regression model for the test includes an intercept. For each 
individual country, we use the Augmented Dickey-Fuller (ADF) and Phillips-
Perron (PP) tests.18 The results reject the null hypothesis of unit root except 
in the cases of France and Italy when using the ADF test. At the panel level, 
both Levin, Lin and Chu’s (2002) t-star and Im, Pesaran and Shin’s (2003) t-bar 
and W (t-bar) tests reject the null of unit root, which enables us to treat this 
panel as stationary.19 
 

4.1 Conditional heteroskedasticity and cross-sectional 
dependence in G7 inflation 

In this section we present and briefly discuss the estimation results of various 
DPDCCV models after performing some preliminary testing following the 
empirical strategy outlined in Section 3. In all cases, we consider an AR (12) 
specification for the mean equation since we are using seasonally unadjusted 
monthly data. 

 First, we test for individual effects in the mean equation. The Wald test 
statistic (using White/Newey-West’s HAC covariance matrix) is 82.22

)6( =χ , 
which is not significant at any conventional level and lead us to consider a 
common intercept in the mean equation. 

 Secondly, we perform likelihood ratio tests for (unconditional) groupwise 
heteroskedasticity and cross-sectional correlation obtaining the values of 

.082552
)6( =χ  and 14.2822

)21( =χ  respectively. These tests statistics are highly 
significant and indicate that the unconditional variance-covariance matrix of 
disturbances is neither scalar identity nor diagonal. 

 More explicitly, these results show that there is significant unconditional 
groupwise heteroskedasticity and cross-sectional correlation. Clearly, the 

                                                 
17 These data are compiled from the International Monetary Fund’s (IMF) International Financial Statistics.  
18 For the ADF and PP tests the number of lags was determined by the floor {

9/5)100/(4 T } which gives a value of 
5 lags in all cases. 

19 It is important to remark that the alternative hypothesis is not the same. In Levin-Lin-Chu test all cross 
sections are stationary with the same AR parameter while in the case of Im-Pesaran-Shin the AR parameter is 
allowed to differ across units and not all individual processes need to be stationary. 
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second test suggests that the assumption of cross-sectional independence 
does not hold in these data.  

 Next, in order to explore if a significant conditional variance-covariance 
process exists, we estimate AR (12) regressions using the squared as well as 
the cross products of the residuals taken from the pooled AR (12) mean 
inflation regression. For the squared residuals, lag 1 is significant at the 5% 
while lags 3, 9 and 12 are significant at the 1% level. In the case of the cross 
products of residuals, lags 1, 3, 6, 7, 9 and 12 are significant at the 1% level.20  

 We also perform simple tests for individual effects in the previous AR (12) 
regressions. We find that the null of no individual effects in the regression 
using squared residuals is rejected at the 5% significance level. This result, 
together with the previous evidence on unconditional groupwise 
heteroskedasticity, leads us to include individual effects in the conditional 
variance equation. For the case of cross products of LS residuals, the joint 
null of no pair specific effects is not rejected pointing to a covariance process 
with a single intercept.21  

 To summarize, the preliminary testing suggests a dynamic panel model 
without individual effects in the mean equation for inflation rates )(π . For 
both the conditional variance and conditional covariance processes, a GARCH 
(1, 1) specification seems to be appropriate given the persistence exhibited 
by the squares and cross products of the LS residuals respectively. The 
variance and covariance equations may include individual specific and a single 
intercept respectively. This DPDCCV model will be estimated and referred to 
as Model 2. We will also consider a few relevant alternative specifications 
based on the following benchmark model:  

it
j

jitjit u++= ∑
=

−

12

1
πβµπ ,  296,...,1;7,...,1 == ti    (9) 

2
1,

2
1,

2
−− ++= titiiit uγδσασ         (10) 

1,1,1, −−− ++= tjtitijijijt uuρλσησ        (11) 
 This model will be referred to as Model 3. Model 2 is a special case of 

Model 3 in that ηη =ij  in equation (11). We also consider a model with cross-
sectional independence, which is defined by equations (9) and (10) only. This 
will be referred to as Model 1. For comparison, two versions of the simple 
dynamic panel data (DPD) model without GARCH effects are also considered. 
The first one, which includes country specific effects, is estimated using the 

                                                 
20 The results are available upon request. 
21 It is important to note, though, that 9 out of the 21 pair specific coefficients resulted positive and significant at 

the 10% or less, indicating that a model with pair specific effects in the covariance process may not be discarded. 
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SDV as well as Arellano and Bond’s (1991) GMM estimators.22 The pooled 
regression model (common intercept) is estimated by OLS.23  

 In Table 2 we report some conventional DPD estimation results. Two 
issues are worth noting. First, the estimated coefficients for the mean 
equation are numerically quite close, although the GMM1 estimator is the 
most efficient (as it would have been expected) and gives a higher number of 
significant coefficients than the other estimators. Second, when comparing 
OLS and LSDV results we find that the (implied) values of the log likelihood 
function are also quite close, which is congruent with the non-rejection 
results from the Wald test for no individual specific effects reported before. 

 Given the previous results, we consider that a specification without 
country specific effects in the mean equation is justified and therefore we use 
it for the DPDCCV models. The estimation results of these models are shown 
in Table 3. All of them were obtained by MLE. It should be remarked that we 
estimated 22, 25 and 45 parameters in Models 1, 2 and 3 respectively. 

 Clearly, the last DPDCCV model (Model 3) outperforms all the other 
models based on the value of the log-likelihood function. Notice that our 
specification strategy picked Model 2 rather than Model 3, so that actually 
estimating several reasonable models is probably important to do in practice. 
In what follows we use the results of Model 3 to characterize the G7’s mean 
inflation process as well as its associated conditional variance and covariance 
processes. 

 According to Model 3, the G7’s inflation volatility can be characterized as 
a significant and quite persistent although stationary GARCH (1, 1) process. 
Similarly, the results for the covariance equation indicate that this process is 
also a quite persistent GARCH (1, 1). 

 We find that all individual specific coefficients in the variance equation 
are statistically significant at the 1% level. Also, all but two of the pair 
specific coefficients in the covariance equation are positive and about half of 
them are statistically significant at the 10% level or less.24 

 Some interesting patterns of individual volatility and cross-sectional 
dependence among the G7’s inflation shocks are worth mentioning. First, our 
results suggest that Italy, France and USA have the lowest levels of 
unconditional volatility. Second, the USA has relatively high and significant 
positive cross-sectional dependence with Canada and to a lesser extent with 
France, Germany and Italy. Third, Japan’s inflation shocks do not seem to be 
correlated with any of the other G7 countries. Fourth, the three biggest 
European economies, namely France, Germany and UK show a relatively 
significant pattern of positive cross-sectional dependence. 
                                                 

22 Given that we are dealing with a large T and small N panel we only use the GMM1 estimator after restricting 
the number of lagged values of the dependent variable to be used as instruments to a maximum of 7. Specifically, we 
use lags 13th through 19th as instruments. See also Baltagi (2001), pp. 131-136 for details on these estimators. 

23 For both OLS and LSDV we computed standard errors using White/Newey-West’s HAC covariance matrix. 
24 These results as well as the ones we referred to in the rest of this section are available upon request. 
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 We also find some interesting patterns for the conditional volatility 
processes. For example while in most G7’s the volatility levels appear to be 
lower at the end of the sample compared with those experienced in the 
eighties, this does not appear to be the case for Canada and Germany. Also, 
the volatility levels appear to have been rising in the last two years of the 
sample in the cases of Canada, France, Germany, and the USA.  

 We have also calculated the implied conditional cross correlations 
between the USA and the other G7 countries and between France, Germany 
and Italy. The dependence of USA with Canada, France and Italy seems to 
have increased over time. On the other hand, the process does not seem to 
exhibit a clear pattern over time in the case of the three biggest European 
economies. 

4.2 The interrelationship between average inflation and 
inflation uncertainty 

One advantage of our DPDCCV model over conventional DPD models and their 
associated estimation methods, including GMM, is that it allows us to directly 
test some interesting hypotheses about the interrelationship between average 
inflation and inflation uncertainty. The most famous of these, that higher 
average inflation is less predictable, is due to Friedman (1977) and was 
formalized by Ball (1992). We can test this hypothesis for the G-7 countries by 
including lagged inflation as a regressor in our conditional variance equation.  

 It has also been argued that increased inflation uncertainty can affect the 
average inflation rate. The theoretical justification for this hypothesis is given 
in Cukierman and Meltzer (1986) and Cukierman (1992) where it is shown that 
increases in inflation uncertainty increase the policy maker’s incentive to 
create inflation surprises, thus producing a higher average inflation rate. In 
order to evaluate the previous hypothesis we simply include the conditional 
variance as an additional regressor in the mean equation. To conduct these 
tests, we alter equations 9 and 10 as shown below and call the resulting 
system Model 4 (we continue to use equation 11 for the covariance process). 

itit
j

jitjit u+++= ∑
=

− κσπβµπ
12

1
,  296,...,1;7,...,1 == ti    (9a) 

1,
2

1,
2

1,
2

−−− +++= tititiiit u ψπγδσασ        (10a) 
 A positive and significant value for the parameter κ  supports the 

Cukierman and Meltzer hypothesis that inflation volatility raises average 
inflation, while a positive and significant value for the parameter ψ  supports 
the Friedman-Ball hypothesis that higher inflation is more volatile. 

 The results are shown in the Table 4. As it can be seen, the parameter ψ  
is positive and highly statistically significant, indicating that higher inflation 
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rates do become less predictable as argued by Friedman. On the other hand, 
we find that the parameter κ  is significant at the 5% level although its sign is 
negative, which clearly rejects the hypothesis that higher inflation 
uncertainty produces higher average inflation rates. 

 This negative sign actually supports previous findings by Holland (1995) 
for the USA and by Grier and Perry (1998) for the USA and Germany. These 
authors argue that if inflation uncertainty has deleterious real effects that 
central banks dislike and if higher average inflation raises uncertainty (as we 
have found here) then the Central Bank has a stabilization motive to reduce 
uncertainty by reducing average inflation. In our G-7 panel we find the 
stabilization motive dominates any potentially opportunistic Central Bank 
behavior. 

 Overall, when comparing Model 3 in Table 3 with Model 4 in Table 4 by 
means of a likelihood ratio test we find that the later outperforms to the 
former and lead us to conclude that (i) higher inflation rates are less 
predictable and (ii) higher inflation uncertainty has been associated with 
lower average inflation rates. 
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Conclusion 

In this paper we have specified a model, (DPDCCV), which accounts for 
conditional heteroskedasticity and cross-sectional correlation within a panel 
data framework, an issue that has not yet been addressed in the panel data 
literature. We have also outlined a methodology to identify these phenomena, 
which could be useful for empirical research. 

The DPDCCV model has been applied to a panel of monthly inflation rates 
for the G7, over the period 1978.2 -2003.9, showing that there exist highly 
persistent patterns of volatility as well as cross-sectional dependence. 
Further, we have found that higher inflation rates become less predictable. 
Also, we have found that the hypothesis that higher inflation uncertainty 
produces higher average inflation rates is not supported in these data. On the 
contrary, we find that this relationship is negative indicating that Central 
Banks dislike inflation uncertainty. 

Although the model formulated here is practical for small N and large T 
panels, it is especially relevant due to the following 4 factors: (1) The rapid 
growth of empirical panel research on macroeconomic and financial issues, (2) 
The ubiquity of conditional heteroskedasticity in macroeconomic and financial 
data, (3) The potential extreme inefficiency of estimators that do not account 
for these phenomena, and (4) The rapid growth of multivariate GARCH models 
outside the panel data literature. Further work, particularly theoretical, to 
account for these phenomena in a more general panel setting is certainly 
necessary. 
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T A B L E  1  

TIME SERIES AND PANEL DATA UNIT ROOT TESTS FOR INFLATION IN THE G7 COUNTRIES 

TIME SERIES UNIT ROOT TESTS 

 AUGMENTED DICKEY-
FULLER 

PHILLIPS-PERRON )(ρZ  PHILLIPS-PERRON 
)(tZ  

CANADA -3.905 -260.545 -13.174 
FRANCE -2.131 -71.268 -6.525 
GERMANY -5.464 -222.100 -12.638 
ITALY -2.247 -68.437 -6.282 
JAPAN -5.521 -219.774 -14.866 
U.K. -3.525 -215.237 -12.291 
U.S. -3.636 -96.258 -7.626 

PANEL DATA UNIT ROOT TESTS 

POOLED T-STAR TEST: 
(LEVIN, LIN AND CHU, 2002) 

-4.79577 (0.0000) 

T-BAR TEST: 
(IM, PESARAN AND SHIN, 2003) 

-6.227 (0.0000) 

W(T-BAR) TEST: 
(IM, PESARAN AND SHIN, 2003) 

-14.258 (0.0000) 

The time series unit root tests correspond to the model with intercept only. For the Augmented Dickey-
Fuller (ADF) and the Phillips-Perron (PP) tests, the lag truncation was determined by floor 9/2)100/(4 T . For the ADF 
and PP )(tZ  tests, the approximate 1, 5 and 10 percent critical values are -3.456, -2.878 and –2.570 respectively. 

For the PP )(ρZ  test the approximate 1 percent critical value is -20.346. For the panel unit root tests, the number 

of lags for each individual country was also set to floor 9/2)100/(4 T . Numbers in parenthesis are p-values. 
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T A B L E  2  

CONVENTIONAL DPD ESTIMATION RESULTS 

CONDITIONAL 

EQUATION 
ESTIMATION RESULTS 

DPD MODEL (INDIVIDUAL SPECIFIC EFFECTS): LSDV ESTIMATOR 
LOG LIKELIHOOD = 96.5691−  
MEAN: 

ititit

ititititit

itititititiit

û446.0046.0

013.0012.0009.0046.0086.0

033.0052.0025.0008.0176.0

12**)*39.14(11)*83.1(

10)58.0(9)30.0(8)46.0(7*)*09.2(6**)*28.3(

5)51.1(4*)*05.2(3)79.0(2)35.0(1**)*32.6(

+++

−++++

+++−+=

−−

−−−−−−

−−−−−−

ππ

πππππ

πππππµπ

 

VARIANCE: 38.142 =itσ  
COVARIANCE: 0=ijtσ  
DPD MODEL (INDIVIDUAL SPECIFIC EFFECTS): ARELLANO-BOND GMM1 ESTIMATOR 
MEAN: 

ititit

ititititit

itititititiit

û446.0048.0

008.0015.0004.0046.0086.0

033.0054.0019.0004.0173.0

12**)*96.86(11**)*15.9(

10)54.1(9*)*79.2(8)69.0(7**)*77.8(6**)*29.16(

5**)*32.6(4**)*25.10(3**)*54.3(2)77.0(1**)*32.33(

+++

−++++

+++−+=

−−

−−−−−

−−−−−−

ππ

πππππ

πππππµπ

 

VARIANCE: 72.132 =itσ  
COVARIANCE: 0=ijtσ  
DPD MODEL (COMMON INTERCEPT): OLS ESTIMATOR 
LOG LIKELIHOOD = 45.5692−  
MEAN: 

itititit

ititititit

ititititit

û447.0047.0012.0

012.0010.0047.0087.0034.0

052.0026.0007.0177.0172.0

12**)*50.14(11)*85.1(10)54.0(

9)32.0(8)50.0(7*)*14.2(6**)*34.3(5)55.1(

4*)*07.2(3)83.0(2)31.0(1**)*35.6()30.1(

+++−

+++++

++−+=

−−−−

−−−−−

−−−−−

πππ

πππππ

πππππ

 

VARIANCE: 25.142 =itσ  
COVARIANCE: 0=ijtσ  

For each model we show the estimated mean equation followed by the estimated (or implied) equations for 
the conditional variance and covariance processes. Values into parenthesis are t-ratios and the symbols ***, **, *, 
indicate significance levels of 1%, 5% and 10% respectively. The t-ratios for the OLS and LSDV estimators are based 
on White / Newey-West’s HAC standard errors. For the GMM1 estimator the number of lagged values of the 
dependent variable to be used as instruments is restricted to a maximum of 7. Specifically, we use lags 13th through 
19th as instruments. 
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T A B L E  3  

ESTIMATION RESULTS FOR THE DPDCCV MODEL 

CONDITIONAL 

EQUATION 
ESTIMATION RESULTS 

DPDCCV MODEL 1 (CONDITIONAL VARIANCE ONLY): MLE ESTIMATOR 
LOG LIKELIHOOD = 22.5466−  
MEAN: 

itititit

ititititit

ititititit

û434.0056.0024.0

027.0027.0060.0071.0004.0

036.0025.0036.0193.0331.0

12**)*94.21(11**)*72.2(10)14.1(

9)33.1(8)35.1(7**)*84.2(6**)*38.3(5)19.0(

4)64.1(3)16.1(2)62.1(1**)*69.8(**)*13.3(

++++

−++++

++−+=

−−−

−−−−−−

−−−−−

πππ

πππππ

πππππ

 

VARIANCE: 2
1,**(6.90)*

2
1,**(29.61)*

2 0.1480.769 −− ++= titiiit uσασ  

COVARIANCE: 0=ijtσ  
DPDCCV MODEL 2 (CONDITIONAL VARIANCE AND COVARIANCE): MLE ESTIMATOR 
LOG LIKELIHOOD = 61.5355−  
MEAN: 

itititit

ititititit

ititititit

û443.0052.0034.0

026.0022.0062.0078.0018.0

021.0012.0039.0153.0367.0

12**)*27.21(11*)*49.2(10)60.1(

9)21.1(8)06.1(7**)*91.2(6**)*64.3(5)81.0(

4)95.0(3)53.0(2)*71.1(1**)*71.6(**)*93.2(

++++

−++++

++−+=

−−−

−−−−−−

−−−−−

πππ

πππππ

πππππ

 

VARIANCE: 2
1,**(5.68)*

2
1,**(48.95)*

2 0.0720.884 −− ++= titiiit uσασ  

COVARIANCE: 
1,1,**(3.86)*1**(26.08)***(2.66)*

0.0370.8770.072 −−− ++= tjtiijtijt uuσσ  

DPDCCV MODEL 3 (CONDITIONAL VARIANCE AND COVARIANCE): MLE ESTIMATOR 
LOG LIKELIHOOD = 08.5328−  
MEAN: 

itititit

ititititit

ititititit

û433.0052.0033.0

029.0016.0061.0075.0022.0

020.0020.0033.0154.0407.0

12**)*71.20(11*)*50.2(10)56.1(

9)33.1(8)77.0(7**)*88.2(6**)*50.3(5)00.1(

4)92.0(3)87.0(2)46.1(1**)*69.6(**)*23.3(

++++

−++++

++−+=

−−−

−−−−−−

−−−−−

πππ

πππππ

πππππ

 

VARIANCE: 2
1,**(5.26)*

2
1,**(44.06)*

2 0.0690.882 −− ++= titiiit uσασ  

COVARIANCE: 
1,1,**(2.98)*1**(11.96)*

0.0340.806 −−− ++= tjtiijtijijt uuσησ  
For each model we show the estimated mean equation followed by the estimated (or implied) equations for 

the conditional variance and covariance processes. Values in parenthesis are t-ratios and the symbols ***, **, *, 
indicate significance levels of 1%, 5% and 10% respectively. All DPDCCV models were estimated by direct 
maximization of the log-likelihood function using numerical methods. 
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T A B L E  4  

ESTIMATION RESULTS FOR THE DPDCCV MODEL WITH VARIANCE EFFECTS IN THE 

CONDITIONAL MEAN AND LAGGED INFLATION IN THE CONDITIONAL VARIANCE 

CONDITIONAL 

EQUATION 
ESTIMATION RESULTS 

DPDCCV MODEL 4 (CONDITIONAL VARIANCE AND COVARIANCE): MLE ESTIMATOR 
LOG LIKELIHOOD = 03.5306−  
MEAN: 

ititititit

ititititit

ititititit

û117.0438.0057.0026.0

022.0018.0061.0086.0031.0

026.0021.0025.0156.0643.0

*)*72.1(12**)*92.20(11**)*78.2(10)23.1(

9)03.1(8)84.0(7**)*92.2(6**)*02.4(5)42.1(

4)17.1(3)97.0(2)12.1(1**)*89.6()*22.3(

+−+++

−++++

++−+=

−−−−

−−−−−−

−−−−−

σπππ

πππππ

πππππ

 

VARIANCE: 
1,**(4.71)*

2
1,**(4.53)*

2
1,**(39.24)*

2 0.0920.0500.867 −−− +++= tititiiit u πσασ  

COVARIANCE: 
1,1,**(3.02)*1**(17.84)*

0.0310.855 −−− ++= tjtiijtijijt uuσησ  
This model has been estimated by direct maximization of the log-likelihood function by numerical methods. 

We show the estimated equations for the conditional mean, variance and covariance processes. Values in 
parenthesis are t-ratios and the symbols ***, **, *, indicate significance levels of 1%, 5% and 10% respectively. 
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