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Summary

This dissertation estimates the Elasticity of Intertemporal Substitution (EIS) for Mexico, a

crucial parameter for economic policy, as it measures how households adjust their consump-

tion in response to changes in their assets’ expected returns. Using a synthetic cohort panel

constructed from ENIGH surveys spanning 1996 to 2022 and employing the Generalized

Method of Moments (GMM), it addresses aggregation bias and weak identification issues

commonly inherent in time-series data and interest rate predictions, unlike previous attempts

for Mexico.

The findings show variable EIS estimates across different specifications and GMM estima-

tors. However, they consistently reveal a statistically significant responsiveness of consump-

tion to income growth, suggesting a prevalent income effect. This may reflect underly-

ing liquidity constraints or impulsive consumption patterns akin to hand-to-mouth behavior.

Moreover, incorporating additional instruments and controls not only refines EIS estimates

but also consistently points to a statistically significant EIS typically below one.
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1 Introduction

The elasticity of intertemporal substitution (EIS) in consumption is a key parameter in dy-

namic models of macroeconomics and finance, as it captures households’ consumption re-

sponsiveness to changes in their assets’ expected returns. To fully grasp its meaning and

relevance, it is necessary to first understand the dual forces that come into play when interest

rates rise: the income and substitution effects.

Higher interest rates increase future cash flows and overall wealth, prompting households to

potentially spend more today—this is the income effect. Conversely, higher interest rates

also raise the opportunity cost of current consumption, encouraging households to save more

to benefit from future higher returns—this is the substitution effect. The prevailing effect

depends on the value of the EIS. At a critical EIS of unity, both effects offset each other;

while at a high EIS, above unity, the substitution effect dominates, indicating households are

more sensitive to shifts in monetary or tax policies.

Furthermore, the EIS plays a pivotal role in determining the magnitude of consumption

growth. Within the Solow model framework, it influences how variations in the interest rate,

depreciation rate, and intertemporal discount factor affect this. For instance, a higher EIS

implies that households are more inclined to defer consumption, leading to faster economic

expansion over time.

A natural question that arises in any given economy is whether the EIS is below or above

unity, and implicitly, what its value might be. While standard general equilibrium macroeco-

nomic models are calibrated with an EIS above unity, empirical estimates show considerable

variation (see Havranek et al. (2015) and Thimme (2017) for a deeper exploration of EIS

heterogeneity), with some findings at odds with these assumptions. For instance, the long-

run risk asset pricing model proposed by Bansal and Yaron (2004), which has the potential

to solve the equity premium puzzle, assumes an EIS of 1.5. This leads to cyclical price-

dividend ratios, a low and stable risk-free rate, and a significant equity premium. Similarly,

other long-run risk asset pricing models, like those by Drechsler and Yaron (2010) and Ai

(2010), consider an EIS above unity, e.g., 2.

Following the widely used approach of Hall (1988), who estimated the EIS by examining
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the consumption Euler equation, and building on the methodology of Attanasio and Weber

(1995), who adopted a synthetic cohort panel approach to circumvent the aggregation bias

inherent in time series data, I endeavor to estimate the EIS for Mexico. This is particularly

pertinent given the limited recent research in this area within the country. To my knowledge,

the only prior attempt is by Arrau and van Wijnbergen (1991). Although they apply the

model of Epstein-Zin, which decouples the EIS from the risk aversion coefficient unlike the

expected utility framework with CRRA utility functions, their EIS estimates carry certain

caveats.

The first and most relevant caveat is that even though their EIS estimate of 1.2 is statistically

different from zero, they cannot conclude whether it differs from 1 due to high imprecision.

This could stem from their use of seasonally unadjusted time series data and aggregate con-

sumption data that do not distinguish between durable and non-durable goods. Additionally,

the nature of aggregate data does not exclude households facing liquidity constraints, for

whom the Euler equation may not hold. The second caveat relates to the period under study:

their estimates are based on quarterly data spanning from 1980 to 1990.

With this in mind, my objective is to leverage more recent microdata to address the chal-

lenges posed by aggregation biases. Nonetheless, I will rely on the time-additive utility

function to derive the EIS (expected utility framework), where it is the inverse of the Arrow-

Pratt measure of relative risk aversion (RRA)—a critical parameter for determining the net

effect of higher future aggregate payoffs on their present value. In this context, highly risk-

averse households might also exhibit a low EIS. However, since an infinitely high RRA does

not align with observed risk-taking behavior, it is important to decouple the direct linkage

between EIS and RRA. Therefore, this work’s findings do not automatically reflect risk aver-

sion levels.

To maintain simplicity and comparability with previous studies predominantly employing

CRRA utility functions, I also rely on the Generalized Method of Moments (GMM) estimator

proposed by Hansen and Singleton (1982). This is robust to weak identification driven by

weak instruments for either consumption growth or interest rates.

2



2 Literature Review

Overall, most efforts to estimate the EIS have concentrated on either US or UK data, provid-

ing powerful insights into potential paths for uncovering this parameter.

Starting with Hall (1988), we can trace the initial attempts to estimate the EIS. Unlike earlier

studies that based their EIS estimation on consumption or savings functions—often obtaining

values as high as 1—he relies on the idea that consumers plan to change their year-to-year

consumption based on their expectations of real interest rates, similar to the now broadly

used Euler equation for consumption. Hall highlights the difficulty of defining consumption

or savings functions, as the relationship between consumption, interest rates, and income

depends on a broader context that can change despite agents always aiming to maximize the

same utility function.

By applying some transformations to the variables of interest, consumption and real interest

rates, extracted from the Euler equation, he concludes that US aggregate consumption in the

twentieth century does not imply a positive value for the EIS. Most of his estimates are quite

precise, suggesting it is unlikely to be much above 0.1 and may well be zero. Subsequent

EIS estimates have been very heterogeneous, but many still point out the possibility that the

EIS—at least for the US—may indeed be statistically zero.

More recently, Yogo (2004) argues that conventional Instrumental Variables (IV) methods

result in the empirical puzzle that the EIS is statistically less than 1, while its reciprocal (the

RRA coefficient under the expected utility framework) is not different from 1. Hence, he

employs various techniques robust to weak instruments, as well as tests and confidence inter-

vals, ranging from k-class estimators—including Two-Stage Least-Squares (TSLS), Limited

Information Maximum Likelihood (LIML), and Fuller-k (Fuller, 1977)—to continuously up-

dated GMM. This approach allows him to solve the puzzle: weak instruments are relevant in

practice and conventional t-tests can lead to misleading evidence. Even so, the EIS appears

to be less than 1 and not significantly different from zero for eleven advanced economies.

It is worth noting that these methods are not a definitive solution to weak instruments, as

confidence intervals remain uninformative when identification is poor. However, they help

prevent erroneous inferences.
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These studies relied on aggregate data when estimating the EIS. Nonetheless, many re-

searchers have pointed out the biases these may introduce and have stressed the advantages of

using microdata instead, as recommended by Ascari et al. (2021). The main is a greater like-

lihood of identifying a statistically significant EIS, as the econometrician has more control

over the aggregation process and can account for sociodemographic or household-specific

variables that would otherwise remain unobserved or averaged out. For this reason, the

following literature review focuses on studies that have estimated the EIS using microdata,

emphasizing the potential gains and issues associated with this approach.

2.1 Data structure implications

Attanasio and Weber (1993) compare EIS estimates using aggregate data versus cohort-

average data—concentrating on households headed by individuals born between 1930 and

1940 from the UK—to ascertain if different data structures alter the principal conclusions.

In general, they discover that the EIS values derived from aggregate data are consistently

lower than those from cohort data, ranging from 0.3 in the former to 0.8 in the latter. The

95% confidence intervals include unity only in cohort-based estimates.

Their analysis indicates that using aggregate data often leads to the rejection of the model’s

implications, such as the Permanent Income Hypothesis (PIH) or the Life Cycle Hypoth-

esis (LCH)—both of which presume that individuals smooth consumption over their life-

time—and the overidentification restrictions that validate the exogeneity of instruments for

the real interest rate. They argue that controlling for labor-supply and sociodemographic

factors reduces the sensitivity of consumption growth to income in cohort data, but not in

aggregate data. This suggests the presence of liquidity constraints and the inappropriateness

of imposing uniform preferences across different cohorts in aggregate analyses.

A further issue with using aggregate data is that it typically involves the arithmetic mean

of consumption rather than the geometric mean, which can be derived from microdata. Al-

though the estimates of EIS do not differ significantly, the geometric mean—from cohort-

average data—yields more precise estimates and avoids the higher order serial correlation

observed in aggregate analysis. Attanasio and Weber (1995) further reinforce these findings,

showing that time series data often reject the overidentification restrictions due to an incorrect

aggregation process that overlooks non-linearities, resulting in an inadequately determined
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EIS.

Subsequent studies by Alan et al. (2019) assess the estimation of the EIS using the linearized

Euler equation. They estimate six life-cycle models that vary by individual impatience rates,

the potential for zero income occurrences, and the type of credit constraints. By numeri-

cally solving each model—based on an isoelastic utility function with a relative risk aver-

sion coefficient of 4 (EIS of 0.25)—they generate consumption functions for a representative

consumer over 40 periods and simulate consumption trajectories for 10,000 ex ante identi-

cal individuals. These simulations form the basis for a series of Monte Carlo experiments

replicating three data structures: an ideal 40-period long panel, a commonly encountered 14-

period short panel, and a synthetic cohort panel constructed as an alternative to either long

or short panels.

Their results show that the long panel is the most effective in accurately recovering the

EIS, due to sufficient data variation, although measurement error in consumption data can

lead to more inflated and less precise estimates. Conversely, estimates from the short panel

result in lower EIS values and are less efficient. Estimations using synthetic cohort panel

data exhibit fewer validity issues compared to available short panels, whereas the standard

instruments—such as lags of consumption growth, income, and interest rates—prove less

effective for explaining interest rates. While the EIS estimates from synthetic cohort panel

data closely mirror those of the long panel in terms of average bias, the precision significantly

diminishes.

Ultimately, these studies highlight the advantages of employing microdata over aggregate

or time-series data, particularly underscoring the benefits of adopting a synthetic cohort ap-

proach when real panels are unavailable, as is the case of Mexico.

2.2 Liquidity constraints and other sources of EIS heterogeneity

As previously noted, a significant limitation of using aggregate data to estimate the EIS is

its potential to overlook individuals facing liquidity constraints, such as hand-to-mouth con-

sumers. Nonetheless, there remains an ongoing debate about whether microdata can effec-

tively address this concern, especially in light of the frequent rejection of overidentification

restrictions in aggregate analyses. The evidence on this issue is varied.
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Zeldes (1989) examines the Euler equation for two distinct groups: those with liquidity con-

straints and those without. He finds that the equation does not apply to the constrained group,

suggesting that EIS estimates should focus on individuals free from liquidity constraints.

Conversely, Runkle (1991) argues that the rejection of the Permanent Income Hypothesis

(PIH) in aggregate data is not necessarily due to liquidity constraints but rather to aggrega-

tion bias: households likely base their economic expectations on individual past experiences

rather than on aggregate data predictions.

Continuing the discussion on the variability of EIS across different groups, Vissing-

Jørgensen (2002) emphasizes the importance of considering limited asset market partici-

pation. Using data from the US Consumer Expenditure Survey (1980-1996) and a synthetic

cohort approach, she estimates the EIS for shareholders, non-shareholders, bondholders, and

non-bondholders. Her findings indicate a higher EIS for shareholders, especially among the

wealthiest, compared to non-shareholders, with EIS values of 0.4 versus nearly zero, respec-

tively.

A similar pattern is observed for bondholders, with an EIS of approximately 0.8—reach-

ing 1.6 for the top tier of bondholders—versus a statistically insignificant EIS for non-

bondholders. For households possessing savings accounts but no bonds or stocks, she iden-

tifies a negligible and statistically indistinguishable EIS from zero. This suggests that while

these assets typically track Treasury rates, the minimal financial wealth of these families

means they do not engage in sophisticated intertemporal optimization, or they might be net

lenders or borrowers who are operationally constrained.

Similarly, Attanasio et al. (2002) use the UK Family Expenditure Survey to estimate EIS

for shareholders and non-shareholders, relying on a synthetic cohort panel approach based

on the predicted probability of stock ownership from 1980 to 1995. They report an EIS

close to 1 for shareholders, whereas the structural parameters—including the EIS—for non-

shareholders appear implausible.

In a study together, Vissing-Jørgensen and Attanasio (2003) employ the data from Vissing-

Jørgensen (2002) to estimate the EIS based on three different Euler equations—two including

bonds and stocks, and a third considering human capital returns. They find that the EIS is less

than 1 for the overall household data but greater than 1 when focusing solely on shareholders.
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Lastly, Guvenen (2006) studies a real business cycle model by introducing two sources of

heterogeneity: limited participation in asset markets and different EIS among households.

He demonstrates that the inconsistency between EIS estimates is largely a consequence of

assuming a representative agent. In this model, limited participation leads to wealth in-

equality—consistent with the asymmetric distribution of data observed in the US—implying

that the properties of aggregate variables related to wealth are mostly determined by the high

elasticity of shareholders, who own most of the economy’s capital. Conversely, consumption

is relatively uniformly distributed among households, also in line with US data, suggesting

that aggregate consumption primarily reflects the low EIS of the majority.

Given all this evidence, one of the principal aims of this work is to build a synthetic co-

hort panel, in the absence of a sufficiently long panel, to control for both household-specific

factors and the presence of liquidity constraints that might prevent estimating a precise or

statistically significant EIS. It is important to mention that, due to the lack of detailed infor-

mation on the assets held by each household, the best assumption is that only households

from the first income quintile are credit constrained. This, of course, may not be entirely

accurate.
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3 Model

In the standard intertemporal optimization problem, a representative household h with time-

separable preferences maximizes its expected lifetime utility derived from consumption.

This utility is discounted by a “pure" discount factor β, and the household’s choices are

constrained by a feasible allocation of resources across different periods.

The optimization problem can be formally expressed as:

max
{Ch

s }
Et

[
T∑
s=t

U(Ch
s , z

h
s , v

h
s )β

s−t

]

subject to the period-by-period budget constraint:

Ah
s+1 = (1 +Rs+1)(A

h
s + Y h

s − Ch
s ), s = t, t+ 1, . . . , T − 1

where the terminal condition must satisfy:

Ah
T ≥ 0

Here, Et represents expectations based on information known at time t, It; Ch
s denotes the

household’s non-durable consumption in period s; zhs includes observable variables such

as demographic or labor supply factors; and vhs captures unobservable influences like taste

shocks or measurement errors that potentially affect the marginal utility derived from con-

sumption. Y h
s , Ah

s and Rs are the household’s income, non-human wealth, and the one-period

real interest rate, respectively.

If the household optimally plans its consumption and has no liquidity constraints, the first-

order condition yields the consumption Euler equation:

Et

[
β
U ′(Ch

t+1, z
h
t+1, v

h
t+1)

U ′(Ch
t , z

h
t , v

h
t )

(1 +Rt+1)

]
= 1 (1)

which suggests that the household allocates consumption between periods such that it cannot

expect to make itself better off by reducing its consumption today in exchange for more con-

sumption later. A widely adopted specification for utility in this context assumes a Constant
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Relative Risk Aversion (CRRA) utility function:

U(C, z, ν) =
C1−γ

1− γ
exp (θz + v) (2)

where γ is the Arrow-Pratt measure of RRA. Substituting equation (2) into (1) gives:

Et

[
β

(
Ch

t+1

Ch
t

)−γ

exp(θ∆zht+1 +∆vht+1)(1 +Rt+1)

]
= 1 (3)

This equilibrium condition can provide orthogonality conditions crucial for estimating the

parameters of the utility function and testing overidentifying restrictions. Considerations

like labor supply choices within z help model preferences optimally, even when dealing with

institutional constraints or corner solutions.

Ignoring the presence of taste shocks or measurement error (vt) simplifies the estimation,

provided sufficient orthogonality conditions exist. Under rational expectations, these expec-

tations are assumed to be orthogonal to all available information at time t (It), simplifying

their empirical implementation.

However, preference heterogeneity or the presence of v complicates parameter estimation

due to the non-linear characteristics of the Euler equation (3). While using aggregate time

series data might be feasible under the assumption of a representative consumer without

significant measurement error, this condition is often not met in practical scenarios. Con-

sequently, it is advisable to employ models that are linear in parameters, which can more

effectively handle the inevitable v in individual-level data, irrespective of its source.

An alternative approach is the log-linear approximation of the Euler equation. This is ob-

tained by taking the natural logarithm of both sides of (3), followed by using the second-order

Taylor approximation for ln(1 + x):

ln

(
Ch

t+1

Ch
t

)
=

1

γ

(
kt + θ∆zht+1 + ln(1 +Rt+1) + ∆vht+1 + uh

t+1

)
(4)
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Assuming the variables involved are log-normal, then:

kt = ln(β) + γ2

(
vart

(
ln

(
Ch

t+1

Ch
t

))
+ vart (ln(1 +Rt+1))

)
− 2γ covt

(
ln

(
Ch

t+1

Ch
t

)
, ln(1 +Rt+1)

) (5)

Where the t subscripts indicate the second moments are conditional on information avail-

able at time t, It. If the conditional distribution of the relevant variables deviates from

log-normality, kt will also include higher conditional moments. Since these moments are

generally not observable, it is useful to rewrite (4) as:

ln

(
Ch

t+1

Ch
t

)
=

1

γ

(
k̄ + θ∆zht+1 + ln(1 +Rt+1)

)
+ eht+1 (6)

In this formulation, k̄ includes the natural logarithm of the discount factor β and the uncon-

ditional mean of the second and higher moments of consumption growth and real interest

rates. The residual et captures expectational errors ut, unobserved heterogeneity vt, and

the deviations of kt from k̄. Now, however, only the parameters γ and θ from (3) can be

estimated, generally using Instrumental Variables (IV) or Generalized Method of Moments

(GMM). Instruments for IV or GMM estimation should be variables known to the household

at time t and should be exogenous to the decision-making process regarding consumption.

Obviously, equations (4) and (6) serve as approximations to (3), nevertheless, several studies

have investigated the specific conditions under which these yield consistent estimates of θ

and γ. Attanasio and Low (2004), for instance, show that the log-linear approximation of the

Euler equation does not introduce bias as long as the innovations in the conditional variance

of consumption, included in k̄ and determined endogenously, are not correlated with the

instruments. They also find that grouping households reduces the variability of idiosyncratic

income shocks, thereby improving the efficiency of estimates. Additionally, they observed

that estimates using the non-linear GMM approach tend to be less reliable compared to those

obtained from the linear model, especially when the discount factor β is high, mirroring

situations akin to those faced by liquidity-constrained households.

Furthermore, Attanasio and Low underscore that including the conditional variance of con-

sumption growth to account for precautionary savings does not substantially change the EIS
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estimates, though it increases the standard errors, attributable to weak instruments for higher-

order terms. Complementary findings by Gomes and Ribeiro (2015) indicate that the impact

of precautionary savings on consumption is constrained by low risk levels. More recently,

Alan et al. (2019) have confirmed that a second-order approximation of the Euler equation

does not improve estimates, primarily due to weak instruments, and that non-linear GMM

approaches are adversely affected by issues related to handling measurement error in con-

sumption data.

Based on these insights, the chosen structural equation for this analysis is:

∆ ln(Ch
t+1) = constant + σ ln(1 +Rt+1) + θ′∆zht+1 + eht+1 (7)

where σ =
1

γ
is the EIS, and z includes demographics and labor-supply variables.
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4 Data

4.1 Building a synthetic cohort panel

Thus far, I have emphasized numerous advantages of employing micro-level data over time-

series or aggregate data, with the primary benefit being the control of aggregation bias. How-

ever, the lack of a sufficiently long panel dataset for Mexico has guided my methodology

towards the approach of Attanasio and Weber (1995), who developed a panel by averaging

household observations from multiple cross-sectional datasets.

In Mexico, the Encuesta Nacional de Gasto e Ingreso de los Hogares (ENIGH) serves as a

rich source of consumption expenditure and sociodemographic data across a wide array of

households, enabling the creation of representative cohorts over time. Administered bienni-

ally by INEGI since 1992—and initially conducted every four years starting in 1984—this

survey provides a substantial temporal dimension for analysis. Therefore, I have selected

ENIGH surveys from 1996 to 2022, encompassing a total of 15 surveys.

Due to methodological changes across different ENIGH series, I include only those house-

hold variables that can be consistently measured across the surveys. These include quarterly

consumption expenditure—–which accounts for monetary outlays on non-durable items like

food, clothing, education, leisure, transportation, transfers to third parties, health, rent, and

other personal goods–—and current income, encompassing wages, rents, transfers, and other

sources of income. Additionally, I consider variables like the number of family members and

earners, the age and years of education of the household head, the number of family members

by age group, and the general minimum wage.

All financial figures, including income and consumption, are adjusted to constant prices us-

ing the Mexican Consumer Price Index (INPC), with 2018 as the base year. This adjustment

ensures that the analysis reflects real economic terms, removing the distortions caused by

inflation.

Continuing with the tradition established by Attanasio and Weber (1995), my analysis in-

cludes cohorts composed of households headed by individuals born between 1962 and 1975.

This age grouping ensures that the youngest cohort head is 21 years old in 1996—the be-

ginning of the period under analysis—and the oldest cohort head is 60 years old in 2022,
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the concluding year. Accordingly, one cohort averages observations from households with

heads born in 1965, while another averages those from households with heads born in 1966,

and so forth. Table 6 in the Appendix details the average number of households per cohort.

With fourteen cohorts consistently observed over thirteen periods, excluding the initial years

to accommodate lagged variables, I manage a balanced panel comprising 182 observations.

The method of grouping by birth year rather than by age significantly enhances the study

of life cycle behavior by allowing for the concurrent tracking of cohorts as they age. This

avoids potential misinterpretations that might arise from age-based grouping in the presence

of cohort effects.

Regarding the 3-month interest rate, I use the Mexican Treasury Bill rate, Cetes, considered a

risk-free benchmark. Since the ENIGH surveys do not provide details on whether households

actively participate in the asset market or the specific interest rates they encounter, employing

Cetes serves as a neutral choice, under the assumption that market rates exhibit a similar

dynamic. Without other means to identify asset-holding households, I control for liquidity

constraints by excluding those in the lowest income quintile of each survey, presuming that

households above this threshold may invest in Cetes, the risk-free asset.

4.2 Life cycle behavior

A key limitation of using a synthetic cohort panel approach, as opposed to a full panel, is that

it does not track individual households throughout their entire life cycle. Instead, it captures

the average consumption behavior of homogeneous groups as they age.

Figures 1 and 2 display the average real (non-durable) log-consumption and average log-

income over time for all cohorts, respectively, including younger and older cohorts not used

in the core estimation to depict a holistic view of life cycle behavior. Each colored segment

in these figures represents the mean log-consumption or income for a specific cohort as it

progresses through different life stages.

Notably, both consumption and income exhibit a hump-shaped trajectory and tend to move

in tandem, reflecting a strong correlation between these two. This pattern challenges the life

cycle hypothesis by suggesting that households may not be smoothing their consumption as

expected throughout their lives. Furthermore, consumption tends to decline more sharply
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than income towards the end of the life cycle, possibly because the income data includes

transfers that older household heads continue to receive.

Figure 1
Average Logarithmic Consumption by Household Head Age and Cohort

Note: The log of non-durable consumption is reported in real terms, adjusted to 2018 prices. Cohorts with
household heads born between 1947-1961 and 1976-1978 were considered but not included in the estimation.
Source: Own elaboration based on data from the ENIGH surveys, 1996-2022.

Figure 2
Average Logarithmic Income by Household Head Age and Cohort

Note: The log of income is reported in real terms, adjusted to 2018 prices. Cohorts with household heads
born between 1947-1961 and 1976-1978 were considered but not included in the estimation. Source: Own
elaboration based on data from the ENIGH surveys, 1996-2022.

Despite these observations, Attanasio and Weber (1995) caution that the hump-shaped be-

havior alone is not sufficient to dismiss life cycle hypothesis, as other sociodemographic fac-

tors, such as family composition, might significantly influence consumption decisions. To

illustrate, Figure 3 plots the evolution of family size composition for all cohorts throughout

their lifespans. Each colored segment in this figure delineates the progression of family size
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for each cohort. As seen, family size also follows a hump-shaped pattern, closely aligning

with the fluctuations in consumption decisions.1

Figure 3
Average Logarithmic Family Size by Household Head Age and Cohort

Note: Cohorts with household heads born between 1947-1961 and 1976-1978 were considered but not included
in the estimation. Source: Own elaboration based on data from the ENIGH surveys, 1996-2022.

Additionally, several effects like life cycle, cohort, and business cycle might influence con-

sumption. By regressing average cohort consumption on cohort dummies and a fifth-degree

age polynomial, following Attanasio and Weber (1995), both cohort and life cycle effects

can be isolated, allowing the residuals to be interpreted as time effects. This approach helps

to distinguish the influences on consumption, attributing observed trends to a combination

of cohort and age effects.

Figure 4
Average Cohort Consumption Over Time (Age and Cohort Effects Removed)

Note: Consumption is reported in real terms, adjusted to 2018 prices. Cohorts with household heads born be-
tween 1947-1961 and 1976-1978 were considered but not included in the estimation. Source: Own elaboration
based on data from the ENIGH surveys, 1996-2022.

1 However, to conclusively determine if consumption behavior correlates with income—and thereby either
support or refute the Life Cycle or Permanent Income Hypotheses—further estimation is required.
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As illustrated in Figure 4, there is remarkable synchronization among cohorts’ consumption,

with noticeable peaks in 2004 and 2006, and a significant decline during the 2020 crisis.

Figure 5 further shows that average consumption aligns closely with cohort-specific con-

sumption patterns.

Figure 5
Detrended Aggregate Consumption

Note: Consumption is reported in real terms, adjusted to 2018 prices. Source: Own elaboration based on data
from the ENIGH surveys, 1996-2022.
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5 Econometric Analysis

5.1 Introducing Generalized Method of Moments2

Consider the following classical linear regression model:

y = Xβ0 + u (8)

As specified in equation (7), let y = ∆ lnC represent an NT ×1 vector of the changes in log

consumption for all N cohorts over T periods. The NT × (k+ r+1) matrix X = [1, ln(1+

R),∆z] includes the explanatory variables that capture the effects of the real interest rate

(log(1 + R)), other household variables (∆z), and a column of ones (1) to account for the

constant term. Here, k denotes the number of endogenous variables, including the interest

rate and household choice variables at time t+ 1, and r represents the number of exogenous

variables, such as the age of the household head. The vector u is an NT ×1 vector, including

both an expectational component and an MA(1) measurement error component for each

cohort and time period. The NT × (m+ r + 1) matrix Z comprises r exogenous regressors

directly from X , m valid instruments, and a column of ones (1) to account for the intercept.

These instruments typically consist of lags of the endogenous variables within X .

Under the assumption of instrument exogeneity, i.e., the errors u are uncorrelated with all

the exogenous regressors, the (k+ r+1)× 1 parameter vector β0 in (8) can be estimated by

solving E [(y −Xβ0)
′Z] = 0, which constitutes a system of m+ r + 1 equations involving

the k + r + 1 unknown elements of β0.

When the errors are homoskedastic and the system is exactly identified (m = k), these

population moments are replaced by their sample moments, and the system of equations

(y − Xb0)
′Z = 0 can be solved for b0, where its value serves as the IV estimator of β0.

However, when the system is overidentified (m > k), the equations in the system cannot be

simultaneously satisfied by the same value of b0 due to the presence of more equations than

unknowns.

An approach to solving the problem of estimating β0 in such cases of overidentification is

to use the GMM estimator, which balances the need to satisfy each equation by minimizing
2 This section draws heavily on Attanasio and Weber (1995).
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a quadratic form involving all these, known as moment conditions. Specifically, let H be

an (m + r + 1) symmetric positive semidefinite weight matrix and β̂0 the estimator that

minimizes:

min
b0

(y −Xb0)
′ZH−1Z ′(y −Xb0) (9)

Upon taking the derivative of the objective function with respect to b0, setting the result

expression to zero, and rearranging, the efficient estimator for β0 is obtained:

β̂0 = P−1
xz X

′ZH−1Z ′y (10)

where Pxz = X ′ZH−1Z ′X and the asymptotic variance-covariance matrix for β0 is given

by Σβ0 = P−1
xz . In cases of homoskedastic errors, the efficient β0 estimator is the Two Stage

Least Squares (TSLS) estimator, which is achieved by setting H = Z ′Z in (10). Conversely,

in the presence of heteroskedastic errors, the efficient estimator becomes the GMM estimator,

obtained by substituting H = Z ′ΩZ in (10), as follows:

β̂GMM
0 = P−1

xz X
′Z(Z ′ΩZ)−1Z ′y (11)

Here, Pxz = X ′Z(Z ′ΩZ)−1Z ′X and Ω is an NT × NT block matrix. Each block of the

main diagonal is a T ×T matrix representing the variance-covariance matrix of the residuals

for one cohort, with the diagonal and the band surrounding the diagonal differing from zero

to reflect the MA(1) structure of each cohort’s residuals due to measurement error. The off-

diagonal blocks of Ω represent the correlation of the residuals between different cohorts and

are assumed to be diagonal, reflecting only constant contemporaneous correlation.

For (11) to yield a feasible estimator, an estimate of Ω is necessary. This is achieved through

a preliminary round of consistent estimates obtained by initially using the identity matrix

in place of Ω, analogous to deriving β0 from the TSLS estimator, as previously discussed.

Following the approach of Attanasio and Weber (1995), the residuals from this first round

are used to construct an estimate of ZΩ̂Z that is robust to heteroskedasticity of unknown

form. The estimate is computed using the following expressions:

Z ′Ω̂Z = P0 + α1P1 + α2P2, 0 ≤ αi ≤ 1, i = 1, 2; (12)
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where:

P0 =
1
N

∑N
j=1

1
T

∑T
t=1 zj,tz

′
j,tû

2
j,t;

P1 =
1
N

∑N
j=1

1
T−1

∑T
t=2

(
zj,tz

′
j,t−1ûj,tûj,t−1 + zj,t−1z

′
j,tûj,tûj,t−1

)
;

Pj =
1
N

∑N
j=1

∑N
i=1

1
T

∑T
t=1

(
zj,tz

′
i,tûi,tûj,t + zi,tz

′
j,tûj,tûi,t

)
.

Here, zj,t is the (k+ r+ 1)× 1 vector of instruments for cohort j in period t; T , the number

of periods each cohort is observed, is uniformly 13 across the balanced panel. N , the number

of cohorts, is 14. The ad-hoc weights α1 and α2 ensure the estimated variance-covariance

matrix is positive definite. Specifically, α1 = 1 − 1

T + 1
, as suggested by Newey and West

(1987) for addressing first-order autocorrelation, and α2 is set to 1. However, empirically

setting both weights to 1 does not significantly alter the point estimates.

Finally, the Sargan (Hansen) test, which tests the null hypothesis that all the overidentifying

restrictions are valid against the alternative that some or none hold, relies on the GMM J-

statistic given by:

JGMM =
1

NT
(Z ′ûGMM)′Ĥ−1(Z ′ûGMM) (13)

where ûGMM are the residuals from equation (8), estimated with the feasible, efficient GMM

from the second (or final) step estimation. Ĥ is the weight matrix used in the second step,

specifically Ĥ = Z ′Ω̂Z. This statistic follows a χ2 distribution with m − k degrees of

freedom. Up to now, the GMM estimator outlined here was the two-step GMM estimator

proposed by Hansen and Singleton (1982). Nevertheless, the iterative GMM procedure can

be extended beyond the first one by reestimating the matrix Ĥ as described in equation (12),

but using the residuals obtained from the two step GMM estimator, β2
0 .

In this extended procedure, a new estimator, β3
0 , is constructed employing the updated Ĥ

matrix. This process can be iterated further, yielding a sequence of estimators βj
0. Specif-

ically, during each iteration j, residuals are obtained using the estimated parameters from

the previous iteration to refine the estimation. The matrix Ĥ is recomputed with these up-

dated residuals, leading to a new estimator βj+1
0 . The iterative process continues until βj+1

0

converges to a stable value or until a predetermined number of iterations is reached.
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5.2 How GMM estimators circumvent potential estimation issues

As previously discussed, in scenarios devoid of persistent household-specific effects, mea-

surement error in consumption, or aggregate shocks not captured by interest rates—to name

a few—it is feasible to directly estimate the non-linear Euler equation (3) using a Non-linear

GMM estimator. Alternatively, the linearized Euler equation (4) can be estimated using

TSLS, which assumes that the term vht is independent both across households within each

period and over time. However, since such ideal conditions are rarely met, it is crucial to

demonstrate how the GMM estimator can address these issues.

First, as Attanasio and Weber (1995) noted, constructing synthetic cohort panels from cross-

sectional data introduces a measurement error in levels, resulting in an MA(1) structure

in first differences. For example, if a sample for a given period includes an exceptionally

wealthy household, this will induce a positive measurement error in the consumption growth

at time t, followed by a negative error at time t+ 1. Consequently, the error term eht+1 in (7)

consists of two components: a white noise component reflecting expectational errors and an

MA(1) component with a coefficient of -1.

Furthermore, the variance of the measurement error component of the residuals changes

with cell size, as shown in Table 6 in the Appendix, leading to significant heteroskedastic-

ity. Thus, when estimating standard errors, both heteroskedasticity and an MA(1) structure

are accommodated, as demonstrated in matrices P0 and P1. Contemporaneous correlation

among the residuals of different cohorts, which is influenced by some cohorts meeting the

age restriction before or after a specified year, is also considered in the Pj matrix.

A second potential issue involves the persistence of household or cohort-specific effects. Al-

though less likely since each cohort is defined by the household head’s year of birth and

updated annually with different households, persistent effects might still emerge if house-

holds within a cohort share additional common components beyond the head’s year of birth.

To address this, one can treat persistent cohort-specific effects as a form of autocorrelation.

For instance, it is possible to allow not just for first-order correlation in each cohort (as in

matrix P1), but also for higher orders of correlation, specifically T , the number of times each

cohort appears in the sample. However, allowing for more than first-order autocorrelation in

each cohort and adjusting for this using Newey and West (1987) ad-hoc weights results in
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minimal changes in standard errors estimates, suggesting that this is not a significant con-

cern.

Conversely, in the presence of fixed cohort effects, it is appropriate to demean all household-

specific variables considered in the Euler equation (7) by the cohort mean before estimation.

Nevertheless, this adjustment typically has little impact on the estimation results. Addition-

ally, in scenarios involving both household-specific effects and measurement error in con-

sumption, Runkle (1991) recommends differencing the interest rates and other household

variables in the Euler equation and accounting for first-order autocorrelation when comput-

ing the residuals for each cohort. This, in fact, is the approach adopted here, though, the

other approaches provide no evidence of cohort-specific effects concerns, aligning with ex-

pectations given the data construction.

Finally, testing for the presence of aggregate shocks not explained by interest rates employs

a straightforward method, crucial for short-term analyses. Chamberlain (1984) highlights

that the sample average of the orthogonality condition, E(eht+1|It) converges to zero as the

number of time periods increases but not if the cross-sectional observations increase while

time periods remain constant. If aggregate shocks are present, using time-specific dummy

variables as instruments for estimating (7) becomes problematic due to their correlation with

these shocks.

To test for the presence of aggregate shocks, I initially apply the simplest specification of

the Euler Equation, using only the interest rate as the explanatory variable, and instrument it

with a standard set including lags of inflation, nominal interest rates, consumption growth,

and income growth (as specified in the Table 2 first column). I then re-estimate this model,

adding time-dummy variables as instruments. The critical test involves comparing the J-

statistics of these two specifications, which should follow a Chi-squared distribution with

degrees of freedom equal to the number of added instruments: the difference—indicative of

aggregate shocks presence—is minor, at 2.96, with a p-value of 0.98, suggesting no signifi-

cant aggregate shocks.

5.3 Selecting instrument sets

Given that consumption decisions and interest rates are determined simultaneously at time

t+1, endogeneity poses a significant concern due to potential reverse causality between these
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variables and the influence of omitted variables affecting both. This issue can be addressed

by instrumenting with variables known at time t or strictly exogenous factors, such as the

age or education level of the household head–—an attribute that remains largely unchanged

during the observed phase of their life cycle.

Likewise, measurement error in consumption introduces an MA(1) structure in the residuals.

This suggests that second lags, or even further lags, of other variables might be more appro-

priate as valid instruments than first lags. However, since the households used to construct

the variables in the estimated equation differ from those used in constructing the first-lagged

instruments, there are no validity concerns with using first-lagged instruments. Moreover,

due to the biennial frequency of each ENIGH survey, employing second or more distant

lags could introduce weak identification issues. For example, the relevance of four-year-

old interest rates in explaining current rates is not the same as in panels with more frequent

observations.

Building on this, when estimating the Euler equation (7), it is advisable to include additional

control variables that may also influence consumption, such as income growth and family

size growth at time t+ 1: critical determinants of household consumption and observable in

ENIGH surveys. Nevertheless, like the other variables discussed, these too are endogenous

and may require the same set of instruments used for explaining interest rates.

Hence, I consider four basic sets of instruments, where each subsequent set introduces an

additional instrument to the preceding set. This allows for the evaluation of whether the

explanation of the endogenous variables, similar to a first-stage estimate in a TSLS setting,

improves with the inclusion of extra instruments.

The first set encompasses the most basic and standard instruments typically employed when

household-specific variables are not available: lags of inflation, the interest rate, consumption

growth, and income growth. The inclusion of the latter is particularly pertinent here as it may

serve as a more effective predictor for income dynamics observed at the micro-level. The

second set expands on this by adding both first lags of the number of earners and family size

growth, the latter of which is also used as a control in some specifications. The third set

introduces the household head’s age, and the fourth set further adds the years of education

of the household head.
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Table 1
F-statistics for First-Stage Regressions of Real Interest Rate, Income Growth, and Family

Size Growth on Instrument Sets

Real Interest Income Family Size
Rate Growth Growth

Set 1: 64.06 8.12 —
inflation, nominal interest rate, [0.591] [0.155]

consumption and income growth

Set 2: 45.75 8.14 8.02
+ family size growth, earners [0.610] [0.218] [0.215]

Set 3: 39.53 6.941 6.894
+ head age [0.613] [0.218] [0.217]

Set 4: 50.03 6.362 11.381
+ head education [0.698] [0.227] [0.344]

Note: R2 values shown in brackets. All regressions adjust consumption (non-durable) and income growth for
inflation using INPC, base year 2018. Interest rates are based on Cetes rates. Data from 1996-2022 ENIGH
surveys, excluding the lowest income quintile. NT = 182 observations for each regression.

Table 1 summarizes these sets and provides the F-statistics for first-stage regressions of key

variables in the Euler equation across the different instruments. Although these statistics

alone may not definitively indicate the best instrument set, they are useful for identifying

potential weak identification issues within the GMM framework.

Table 7 in the Appendix shows the Stock and Yogo (2005) critical values for the differ-

ent number of instruments used for testing the null hypothesis that the bias of TSLS as a

fraction of OLS bias is greater than 5%, 10%, 20%, and 30%. It is noteworthy that there

are no concerns regarding the relevance of instruments for explaining interest rates, and the

TSLS relative bias is not greater than 5% across all instrument sets considered. However,

adding household-specific variables does not enhance the prediction of these rates, as they

are common across households, i.e., aggregate or shared.

Conversely, for household-specific variables such as income growth or family size growth,
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more concerns about instrument relevance arise. For none of the sets is the null hypothesis

of weak instruments by Stock and Yogo (2005) rejected, since the TSLS bias as a fraction of

OLS bias is greater than at least 20%. This calls for the use of an estimator robust to weak

instruments, e.g. GMM, as IV estimates may not be reliable.

Interestingly, the more extensive sets, 3 and 4, do not significantly improve predictions for

income growth and may even introduce some noise. Nonetheless, the fourth set performs

better for explaining family size growth than the third set, which only adds the household

head’s age and may not be more effective than the second set for explaining all variables.

For the most basic specification, where no independent variables other than the real interest

rate are considered, the standard set may be the optimal choice. Table 8 in the Appendix

offers a more detailed comparison of the impact of switching between these sets on the

validity of instruments for each variable of interest. Overall, the findings consistently suggest

that sets 2 and 4 might be suitable for scenarios requiring predictions of income growth and

interest rates, while set 4 could be preferred when including family size growth as well.
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6 Results

Tables 2 and 3 present eight specifications for estimating the EIS (the coefficient on the real

interest rate), using four different data sets and adding controls such as income growth and

family size growth. Tables 4 and 5 replicate these specifications using the Iterative GMM

estimator instead of the Two-Step GMM, because in a well-specified model, conclusions

about the validity of instruments, as indicated by the Sargan Criterion, should not change

significantly (Davidson & MacKinnon, 2004). Figure 6 plots the confidence intervals of the

EIS for each specification, allowing comparisons between the results obtained with different

GMM estimators for the same specification.

The first specification, which uses no controls in the structural equation and a standard set

of instruments, typically yields a high, yet imprecise EIS within the Two-Step GMM frame-

work, while the Iterative GMM estimator results in an even higher and more precise EIS:

2.42 (0.320) versus 0.904 (0.485), where the standard errors are in parentheses.

The second specification, still employing the standard set of instruments but incorporating

household income growth as a control in the Euler equation, leads to statistically significant

EIS values with both the Two-Step and Iterative GMM estimators. The Iterative GMM

estimator yields higher EIS values: 2.279 (0.389) versus 0.753 (0.325), with standard errors

in parentheses.

These results highlight several typical issues when additional household variables are not

available. First, consistent with EIS estimates using aggregate data and the Two-Step GMM,

the EIS appears statistically insignificant without further controls, even when more aggregate

data is available but lacks specific household variables beyond lagged income growth as an

instrument, which may not be more informative for explaining interest rates. Second, both

specifications (1) and (2) may not robustly estimate the EIS, as evidenced by significant

shifts in EIS confidence intervals depending on the chosen GMM estimator. Additionally,

the Sargan Criterion results from the second specification using the Iterative GMM estimator

reject the hypothesis of instrument validity. Therefore, if income growth is included as a

control in the Euler equation, it is necessary to use additional instruments for this variable.
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Table 2
Two-step GMM estimates of Euler Equation for Consumption

∆ ln(Ct+1) = constant+ σ ln(1 +Rt+1) + θ′zt+1 + ϵt+1

(1) (2) (3) (4)

Real interest rate 0.904 0.753 0.758 0.664

(0.485) (0.325) (0.289) (0.359)

Income growth 0.524 0.889 0.939

(0.079) (0.072) (0.081)

Family size growth 0.065

(0.125)

Sargan Criterion 2.47 3.76 3.75 3.41

(p-value) (0.48) (0.15) (0.43) (0.33)

+ instruments + 2 + 2 + 4 + 4

(m− k)

Note: Standard errors are reported in parentheses under each coefficient. The first two columns use a stan-
dard instrument set, which includes lags of inflation, nominal interest rate, consumption growth, and income
growth. The third and fourth columns add lags of family size growth and number of earners to this set. Both
consumption (non-durable) and income growth are adjusted for inflation using the INPC with 2018 as the base
year. Interest rates are based on the Mexican Treasury Bill rate, Cetes. The analysis excludes households from
the lowest income quintile, covering the 1996-2022 ENIGH surveys. NT = 182 observations for each specifi-
cation.

The third specification expands on this by including two household variables as instruments:

the lags of family size growth and the number of earners. This adjustment leads to a notable

increase in the impact of income growth on consumption growth, rising from 0.524 in the

second specification to 0.889 in the third, based on the Two-Step GMM estimator. Also, the

third specification appears more robust, as Iterative GMM estimations maintain consistent

conclusions: the EIS remains statistically significant and crucially in neither case can the
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hypothesis of instrument validity be rejected.

Table 3
Two-step GMM estimates of Euler Equation for Consumption (Continued)

∆ ln(Ct+1) = constant+ σ ln(1 +Rt+1) + θ′zt+1 + ϵt+1

(5) (6) (7) (8)

Real interest rate 0.733 0.543 0.385 0.327

(0.284) (0.353) (0.223) (0.250)

Income growth 0.892 0.960 0.955 0.981

(0.072) (0.082) (0.065) (0.068)

Family size growth 0.116 0.211

0.922 (0.066)

Sargan Criterion 3.76 3.39 4.06 3.80

(p-value) (0.58) (0.49) (0.66) (0.57)

+ instruments + 5 + 5 + 6 + 6

(m− k)

Note: This table presents additional specifications for the Two-step GMM estimates. Columns (5) and (6)
build on the instrument set from Columns (3) and (4), which include lags of inflation, nominal interest rate,
consumption growth, income growth, family size growth, and number of earners, by incorporating the house-
hold’s head age. Columns (7) and (8) further extend this set by adding the household head’s years of education.
NT = 182 observations for each specification.

Specification (4) continues to use the second set of instruments but adds family size growth

as an explanatory variable in the Euler equation. This can be viewed as a robustness check

for the third specification in both GMM settings. Adding more controls sustains the conclu-

sions regarding the impact of the real interest rate (EIS) and income growth on consumption

growth, though it reduces the magnitude of the EIS. With the Two-Step GMM estimator, the

EIS decreases from 0.758 (0.289) in the third specification to 0.664 (0.359) in the fourth,
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and with the Iterative GMM, it decreases from 0.935 (0.345) to 0.836 (0.401). Likewise, in

specification (4), regardless of the chosen GMM estimator, the conclusions about the impact

of family size growth remain consistent: it is not statistically significant in any case.

Table 4
Iterative GMM estimates of Euler Equation for Consumption

∆ ln(Ct+1) = constant+ σ ln(1 +Rt+1) + θ′zt+1 + ϵt+1

(1) (2) (3) (4)

Real interest rate 2.421 2.279 0.935 0.836
(0.320) (0.389) (0.345) (0.401)

Income growth 0.059 0.966 0.978
(0.483) (0.075) (0.084)

Family size growth 0.042
(0.119)

Sargan Criterion 3.41 8.45 4.30 3.85
(p-value) (0.33) (0.01) (0.36) (0.27)

+ instruments + 2 + 2 + 4 + 4
(m− k)

Note: Standard errors are reported in parentheses under each coefficient. The first two columns use a stan-
dard instrument set, which includes lags of inflation, nominal interest rate, consumption growth, and income
growth. The third and fourth columns add lags of family size growth and number of earners to this set. Both
consumption (non-durable) and income growth are adjusted for inflation using the INPC with 2018 as the base
year. Interest rates are based on the Mexican Treasury Bill rate, Cetes. The analysis excludes households from
the lowest income quintile, covering the 1996-2022 ENIGH surveys. NT = 182 observations for each specifi-
cation.

Specifications (5) and (6) extend specifications (3) and (4) by including the age of the house-

hold head as an additional instrument. The inclusion of this instrument has minimal impact

on the coefficients for interest rates and income growth in both the Two-Step GMM and

Iterative GMM settings, as seen when comparing specification (3) with (5), and specifica-

tion (4) with (6). The latter comparison shows that while there are no major shifts prior

to the addition of an extra instrument, adding both more instruments and controls tends to

slightly reduce the EIS value. However, these specifications may not necessarily outperform

the earlier specifications (3) and (4), as an ANOVA analysis indicates (see Table 8 in the

Appendix).
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Table 5
Iterative GMM estimates of Euler Equation for Consumption (Continued)

∆ ln(Ct+1) = constant+ σ ln(1 +Rt+1) + θ′zt+1 + ϵt+1

(5) (6) (7) (8)

Real interest rate 0.992 0.905 0.449 0.354

(0.331) (0.399) (0.218) (0.237)

Income growth 0.974 0.980 1.183 1.174

(0.076) (0.084) (0.063) (0.065)

Family size growth 0.034 0.142

0.120 (0.064)

Sargan Criterion 4.2 3.77 5.09 5.07

(p-value) (0.51) (0.43) (0.53) (0.40)

+ instruments + 5 + 5 + 6 + 6

(m− k)

Note: This table presents additional specifications for the Iterative GMM estimates. Columns (5) and (6) build
on the instrument set from Columns (3) and (4), which include lags of inflation, nominal interest rate, consump-
tion growth, income growth, family size growth, and number of earners, by incorporating the household’s head
age. Columns (7) and (8) further extend this set by adding the household head’s years of education. NT = 182
observations for each specification.

Specifications (7) and (8) expand on the previous specifications by adding the household

head’s years of education as an instrument, significantly reducing the EIS value. With the

Two-Step GMM estimator, the EIS is recorded at 0.385 (0.223) in specification (7) and 0.327

(0.250) in specification (8). Similarly, with the Iterative GMM, the EIS estimates are 0.449

(0.218) and 0.354 (0.237), respectively. These findings suggest that controlling for the house-

hold head’s years of education may result in an EIS that is not statistically different from

zero. Furthermore, unlike the coefficients on family size growth, which were not statisti-
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cally significant in previous specifications that included this variable in the Euler equation,

the coefficient becomes statistically significant in specification (8). This change may be at-

tributed to the inclusion of the household head’s years of education, which could improve

the prediction of family size growth, as evidenced in Tables 1 and Table 8 in the Appendix.

Figure 6
EIS Confidence Intervals by GMM Estimator

Note: 90% confidence intervals for the EIS are reported. Specifications “A", which consider various controls
and instument sets, are presented in Tables 2 and 3. Specifications “B" are detailed in Tables 4 and 5. Source:
Own elaboration based on data from the ENIGH surveys, 1996-2022.

Despite these findings, caution is warranted. Cohorts generally display similar years of ed-

ucation, ranging from 5-7. Yet, in the initial ENIGH surveys used for estimation (1998 and

2000), all respondents reported having more than this average, which could be due either to a

reporting bias in these waves or more educated household heads being overrepresented. It is

unclear if the method of questioning changed across ENIGH surveys, which could influence

how education data was collected.

In this context, it is reasonable that education might more accurately explain the commonly

shared real interest rate than the instrument sets 3 and 4, which do not include it as an

instrument (as shown in Table 8 in the Appendix), because it reflects differences across time

periods. However, this introduces the potential for a confounder that could simultaneously

influence both interest rates and education levels, an aspect not accounted for in the current

analysis. When this factor is controlled for, the education of the household head may prove

less effective as an instrument for explaining interest rates. This is particularly relevant given

that the average education level among the households in the study is relatively uniform.
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Therefore, education could be endogenous and might not serve as a valid instrument in this

analysis.

Additionally, results from specifications (3)-(6), which exclude education as an instrument,

tend to produce more consistent coefficients, regardless of whether an additional instrument

is used or a different estimator is applied.

Interestingly, in almost all specifications (except for the second one, where income growth

needs to be instrumented by additional household-specific variables beyond household in-

come growth), the coefficient on income growth is very stable and statistically significant.

Wald tests for specifications (3)-(8) confirm that it is not statistically different from 1 or less,

as expected, across specifications and between estimators (see Table 9 in the Appendix).

Overall, these results offer insights into household consumption behavior. First, the signifi-

cant sensitivity of consumption to income growth challenges the Life Cycle and Permanent

Income hypotheses, which poses that households do not react substantially to changes in

their current income as they tend to smooth consumption over their lifetimes. This find-

ing is also consistent with the observed hump-shaped behavior shared between consumption

growth and income growth in Graphs 1 and 2. Furthermore, even when controlling for family

size growth, the sensitivity of consumption to income growth remains evident.

It is important to note that all households considered in constructing the synthetic cohort

panel are at a stage of life where their consumption behavior is likely stable–—they are nei-

ther too young, with typically rising consumption, nor too old, where consumption might

decline more significantly than income. Thus, the observed high sensitivity of consump-

tion to income could indicate the presence of liquidity constraints, aligning with the average

income levels of all cohorts in the sample. These cohorts fall between the 52nd and 66th

income percentiles. Despite excluding the lowest quintile before averaging household ob-

servations to obtain cohort data, many households may still face credit constraints. Their

quarterly real income ranges from 37,435 to 81,166 MXN.

Without additional information to exclude households that may engage in the asset market

by lending or borrowing, the analysis is narrowed to consider only households in the highest

income quintile before constructing the synthetic cohort panel. Unfortunately, limiting the

sample to the wealthiest households (90th percentile) leads to an insufficient number of ob-
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servations for building representative cohorts. Figure 7 in the Appendix shows the income

distribution.

Moreover, repeating estimations with households solely in the top income quintile introduces

further challenges in estimating the EIS. This narrowing of the sample reduces variation in

the instrument sets, making the EIS more unstable across both specifications and estimators.

In addition, some specifications now reject the hypotheses of instrument validity, suggesting

that other instruments might be necessary for estimating the EIS under this scenario. How-

ever, one conclusion remains consistent: the sensitivity of consumption to income growth is

still statistically significant, albeit less than 1.

Second, the inclusion of additional controls and instruments consistently leads to a lower

EIS. Nonetheless, specification (3)–—which is preferred over specifications (4), (6) and (8)

due to potential weak identification issues in explaining family size growth or concerns about

the endogeneity of the household head’s education–—indicates a statistically significant EIS.

The confidence intervals for the EIS from this specification, whether using the Two-Step

GMM or Iterative GMM, include 1, preventing a definitive conclusion on whether it is higher

or lower than unity. Notably, specifications (4) and (6) that control for family size tend to

be more imprecise (possibly due to weak instruments for explaining this), displaying higher

standard errors, suggesting that the true EIS might well exceed 1.

Indeed, instrumenting for additional household factors generally reduces the EIS value, and

the significant coefficient on income may still indicate a predominant income effect over a

substitution effect. For instance, estimating the Euler equation with both real interest rates

and income growth as explanatory variables, and instrumenting these with the third set of

instruments plus a squared term for the household head’s age, yields an EIS of 0.749 (with a

standard error of 0.201 and a J-statistic p-value of 0.49) using the Iterative GMM estimator,

which typically reports higher EIS values. In this context, including more instruments and

household-specific variables has the potential to enhance the precision of EIS estimates.
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7 Conclusions

In general, the estimation of the Elasticity of Intertemporal Substitution (EIS) appears highly

sensitive to both the chosen specification and the GMM estimator used. In finite samples like

the one in this study, different GMM estimators can yield different conclusions. However,

relatively robust estimates and a J-statistic that does not reject the null hypothesis of instru-

ment validity suggest that the model may be well-specified. The preferred specifications

yield statistically significant EIS values, indicating that including more household-specific

variables as controls or instruments could refine the precision of these estimates, potentially

leading to an EIS value less than one. This would suggest a predominance of the income

effect over the substitution effect.

Among all well-specified models and instrument sets, one consistent finding emerges: the

significant influence of income growth on consumption growth, which underscores the

likelihood of liquidity constraints within the sample, challenging the assumption that the

Euler equation holds for these households. This observation also contradicts the theory

that households—or at least Mexican—, on average, smooth consumption over their life

cycles. Additionally, there may be very impatient households–—akin to hand-to-mouth

consumers—–who prefer (or have no other option than) immediate consumption over sav-

ing, even when interest rates rise, consistent with a dominant income effect or an EIS less

than one. Unfortunately, the level of individual impatience is not directly observable in this

study, as linearizing the Euler equation places the discount factor, among other terms, in the

intercept.

Moreover, more sensitive EIS estimates from households in the top income quintile raise

questions about whether the Cetes interest rate truly reflects the rates considered by these

individuals. In an ideal scenario, distinguishing between households that engage in lend-

ing/borrowing and those that do not, and identifying the interest rates they consider, would

allow for a more precise estimation of the EIS and help determine if asset holders exhibit

a larger EIS than non-asset holders or non-bondholders. Nonetheless, the findings pre-

sented should be interpreted as reflective of the average Mexican household, typically sit-

uated within the 50th to 60th income percentiles, who likely considers the risk-free interest

rate.
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For future research, employing the available data to estimate the EIS using the Continu-

ous Updating GMM estimator—–recommended by Hansen et al. (1996) for its superior fi-

nite sample performance compared to the Two-Step or Iterative GMM—–may be beneficial.

Furthermore, exploring utility functions that specifically incorporate Epstein and Zin (1989)

preferences could yield a higher estimated EIS without imposing a rigid relationship between

this parameter and the risk aversion coefficient.

In sum, while the results are not definitive, there is suggestive evidence that the income effect

is dominant: consumption is highly responsive to changes in current income, and households

may not significantly alter their consumption behaviors in response to changes in interest

rates.
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9 Appendix

Table 6
Cohort Definition

Cohort Year of Birth Average Cell Size

1 1962 739

2 1963 703

3 1964 765

4 1965 749

5 1966 794

6 1967 719

7 1968 811

8 1969 738

9 1970 826

10 1971 728

11 1972 801

12 1973 756

13 1974 747

14 1975 701

Note: Data from 1996-2022 ENIGH surveys, excluding the lowest income quintile.
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Table 7
Stock and Yogo Critical Values for the Weak Instrument Test Based on TSLS Bias, 5%

significance level

Number of Instruments 5% 10% 20% 30%

4 16.85 10.27 6.71 5.34
5 18.37 10.83 6.77 5.25
6 19.28 11.12 6.76 5.15
7 19.86 11.29 6.73 5.07
8 20.25 11.39 6.69 4.99

Note: Taken from Stock and Yogo (2005). These critical values are for testing the null hypothesis that the bias
of TSLS as a fraction of OLS bias is greater than the value in the columns for each number of instruments.
For instance, to ensure that TSLS relative bias is not greater than 10% when 4 instruments are considered, the
F-statistic in Table 1 first row must be greater than 10.27.

Table 8
First-Stage Regression Comparative Analysis of Different Instrument Sets Across

Endogenous Variables in Euler Equation

Comparison Real Interest Income Family Size
Rate Growth Growth

1 vs 2 4.322 7.062 —
(0.014) (0.001)

2 vs 3 1.469 0.003 0.327
(0.227) (0.952) (0.568)

2 vs 4 25.093 1.012 17.05
(0.000) (0.365) (0.000)

3 vs 4 48.318 2.021 33.711
(0.000) (0.156) (0.000)

Note: This table presents F-statistics and corresponding p-values (shown in parentheses) from ANOVA com-
parisons of nested models in first-stage regressions. Each model comparison assesses the inclusion of additional
instruments in explaining the endogenous variable. Definitions of instrument sets are provided in Table (1). All
regressions adjust consumption (non-durable) and income growth for inflation using INPC, base year 2018.
Interest rates are based on Cetes rates. Data from 1996-2022 ENIGH surveys, excluding the lowest income
quintile. NT = 182 observations for each regression.

38



Table 9
Wald Tests for Specifications (3)-(8) Using Two-Step GMM and Iterative GMM Estimators:

Testing the Null Hypothesis That Variables Are Equal to 1

Interest Rate Income Growth Interest Rate &
Income Growth

(3) - Two-Step GMM 0.699 2.33 5.139
(0.403) (0.126) (0.076)

(3) - Iterative GMM 0.035 0.209 0.426
(0.850) (0.647) (0.807)

(4) - Two-Step GMM 0.868 0.548 3.297
(0.351) (0.459) (0.192)

(4) - Iterative GMM 0.168 0.0628 0.550
(0.681) (0.801) (0.759)

(5) - Two-Step GMM 0.880 2.225 5.389
(0.348) (0.135) (0.067)

(5) - Iterative GMM 0.000 0.114 0.158
(0.982) (0.735) (0.924)

(6) - Two-Step GMM 1.668 0.226 3.797
(0.196) (0.634) (0.149)

(6) - Iterative GMM 0.056 0.052 0.271
(0.812) (0.818) (0.873)

(7) - Two-Step GMM 7.57 0.450 9.367
(0.005) (0.501) (0.009)

(7) - Iterative GMM 6.382 8.31 15.20
(0.011) (0.003) (0.000)

(8) - Two-Step GMM 7.209 0.073 8.03
(0.007) (0.785) (0.018)

(8) - Iterative GMM 7.375 7.107 13.439
(0.006) (0.007) (0.001)

Note: Wald tests for the null hypothesis that the column variable is equal to 1. p-values are in parentheses
under the Wald statistics. Specifications (3)-(8) are detailed in Tables 2-5.
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Figure 7
Log-transformed Income Distribution by Cohort

Note: Average log-transformed income distribution is displayed in black. Dashed lines represent each income
quintile. Source: Own elaboration based on data from the ENIGH surveys, 1996-2022.
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