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ser tan cercano a mı́ que ha estado en mis mejores y peores momentos. Te amo y siempre lo

haré.
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Abstract

This thesis examines the Nelson-Siegel model, with a focus on the Mexican and United States

yield curves over a 13-year period. The study investigates the model’s accuracy and adaptabil-

ity in the face of exogenous shocks that produce sudden changes to the curve. Utilizing the

dynamic Nelson-Siegel model and a cross-validation process, we optimize the λ parameter to

enhance forecasting precision. The results demonstrate that while the Nelson-Siegel model is

generally accurate, it faces challenges during periods of yield curve stress. Our findings indi-

cate that short-term maturities are more accurately forecasted for the United States, whereas

long-term maturities yield better forecasts for Mexico. This research contributes to the literature

by identifying the model’s limitations and proposing an improved forecasting methodology that

adjusts to sudden yield curve changes. The implications of these findings are significant for cen-

tral bankers and private investors, offering insights into better monetary policy and investment

decisions.
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1. Introduction

The significance of the yield curve is indisputable, despite occasionally being overlooked. The

information in this instrument is crucial for any decision you make in today’s world of credit.

Suppose you want to get a credit card, a small loan, a car loan, or a mortgage, or invest your

money, buying bonds, stocks, lending, or a savings account. The interest rate that you will pay

if you borrow or gain if you lend will depend on the time to maturity (repayment), and thus, it

will depend on the yield curve of said financial instrument. For most of your financial decisions,

you will have to look at the yield curve, and this is true for governments too.

Notably, the yield curve of sovereign bonds is an important indicator of a country’s financial

health, and its shape can detail the market’s expectations of the macroeconomic outlook. Addi-

tionally, the yield curve is a strong predictor of economic recessions, according to Benzoni et al.

(2018) several factors that influence the rate premiums are summarized within the yield curve,

and therefore inversions of the curve are related with expectations of economic downturn.

Knowing the yield curve’s importance, forecasting its behavior is extremely attractive. Sev-

eral methods exist for this; one is particularly interesting for the descriptiveness of its factors:

the Nelson-Siegel model. Diebold and Li (2006) dynamic modification of the model and its rec-

ommendations allows us to understand the factors as descriptors of the curve; level, slope and

curvature. Additionally, the model demonstrates the relevancy of the exponential decay factor

which determines the point of maximum curvature.

This thesis follows the yield curve throughout 13 years of data in Mexico and the United

States. The choice for these countries is based on the intersection of their economies and mone-

tary policy, the recent economic downturns that they have faced and the differences on the health

and risk of their economy. This enriches the analysis by illustrating differences in behaviour and
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expectations between developed and developing economies that go through similar economic

cycles and crisis.

This research analyzes the effectiveness of the model by looking at the shapes that it cre-

ates, and its forecasting capabilities. Nelson and Siegel (1987) explain the effectiveness of the

forecasts made by their models, comparing them to AR(1), VAR(1), random walks, and other

models that forecast the yields directly. Diebold and Li (2006) modify the model so that its

factors are dynamic and change over time. Additionally, they emphasize the exponential decay

factor and recommend using the value 0.0609 for forecasting. While these two papers are some

of the most significant advances in this field, the Nelson-Siegel model presents shortcomings

while producing specific yield curve shapes. Diebold and Li’s recommendation of an exponen-

tial decay factor of 0.0609 is not an accurate one-fits-all solution.

Therefore the research objective is to answer how well the Nelson-Siegel can fit the shapes

of the yield curve throughout different points of stress and how can the forecasting capabilities

of the model become adaptable to sudden changes on the yield curve’s behaviour and periods of

stress.

This work contributes to the existing literature on the yield curve by decomposing the short-

comings of the Nelson-Siegel model to fit yield curve and identifying times of stress. Moreover,

it introduces a cross-validation method for forecasting the yield curve that gives better results

than those from the Diebold and Li modifications according to the Diebold-Mariano statistic.

The structure is as follows: Chapter 2 discusses the relevancy and history of the yield curve,

its importance, and various models for its forecasting. Chapter 3 covers the Nelson-Siegel model

and the literature. Once we understand the yield curve’s relevance and the Nelson-Siegel model,

Chapter 4 examines the data structure used in this thesis. Chapter 5 describes the methodology

that will yield results. In Chapter 6, discusses the analysis results and their meaning. Chapter 7

concludes the findings of this research.
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2. The Yield Curve

The yield curve is a graph that shows the relationship between the interest rates (yields) of bonds

and their different maturities. It illustrates how the payout structure changes over time and can

be interpreted differently depending on the financial instrument. For sovereign bonds offers

numerous practical applications. Private agents can leverage it to identify optimal investment

opportunities and secure the best loan interest rates. Additionally, the yield curve reveals the

economy’s phase, indicating whether it is expanding or approaching a recession, according to

Estrella and Mishkin (1996) the yield curve is a simple and reliable indicator for the probability

of recession in the United States. Furthermore, as a primary policy tool, the sovereign yield

curve illustrates debt construction strategies. Constructing a yield curve involves more than

plotting yields against maturities; it entails creating a spectrum of financial instruments across

various maturities. This approach grants the government control over the average life of its debts

and provides lenders with diverse investment options.

Campbell (1995) explained the yield curve’s importance while recounting how, in 1994,

the United States Government took a high interest in the term structure. He used the yield

curve to explain why the government had taken an approach to reduce the average maturity of

the sovereign debt. This describes how manipulation of the maturity of financial instruments

is a tool for controlling how a government issues debt. Haubrich et al. (1996) examined the

forecast capabilities of the Yield Curve and its significance in predicting economic growth and

recession, particularly finding that the yield spread derived from the yield curve was the best

predictor four quarters ahead of time, additionally in analyzing the yield curve they discovered

that the economy became close to the yield curve only after 1994.

The expectations hypothesis is rooted in the yield curve’s ability to predict economic states.
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According to Mishkin (1990) this theory posits that long-term interest rates are simply an aver-

age of the expected short-term interest rates in the future. Therefore, the yield curve provides

insights into economic expectations. For instance, a low long-term interest rate is often associ-

ated with a recession, making an inverted curve a potential predictor of an economic downturn.

Additionally, the Yield Curve reflects market participants’ expectations of the central bank’s

actions, as monetary policy significantly influences yields of many maturities.

The sovereign yield curve is constructed using the rates for the zero-coupon bonds, which are

debt instruments that only repay the face value plus the yield. The basic formula for calculating

the price of a zero-coupon bond is P = F
(1+r)n

, where P is the bond’s price, F is its face value,

r is the zero-coupon rate, and n is the number of periods until maturity. The spot rates derived

from this formula are the pure discount rates for various maturities, which are foundational in

constructing the yield curve.

In addition to spot rates, the yield curve facilitates the derivation of forward rates, which

reflect market expectations about future interest rates. The forward rate, calculated using the

formula f1,2 =
(

(1+r2)t2

(1+r1)t1

) 1
t2−t1 − 1, where r1 and r2 are the spot rates for maturities t1 and

t2, respectively, provides information about the conditions of loans or investments that will

commence at a future date. The shape and slope of the yield curve influence forward rates

and, consequently, investors’ expectations about future interest rate movements. An upward-

sloping yield curve suggests that short-term interest rates are expected to be lower than long-

term rates, while a downward-sloping yield curve implies the opposite, reflecting expectations

of an expanding or contracting economy respectively.

The term structure of interest rates is also used to infer information on other financial in-

struments that are not only related to sovereign debt and the overall macroeconomic conditions.

Umar et al. (2021) used the three components of the yield curve (level, slope and curvature) as

well as sectorial equity indices to find a connection and give additional interpretation to these

factors. They conclude that the level component is a transmitter of return spillovers, and the

curvature is a transmitter of volatility spillovers. While this is an specific use of the compo-

nents of the yield curve, these have general importance as a macroeconomic and expectations

indicators. These components can be calculated using the components from the Nelson-Siegel
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model or using the actual rates for different maturities and performing arithmetic operations.

These operations and the difference with the Nelson-Siegel components will be discussed in the

methodology section.

In Mexico, the yield curve has experienced a complex history. According to Meade Kuri-

breña et al. (2012), since the 1990’s there was an intention to construct a yield curve with longer

and more diverse maturities for government bonds. However, the 1994 crisis temporarily halted

this project. Constructing the yield curve for Mexico involved extending the average life of

Mexican debt and making the country more attractive to investors by offering a wider range of

maturities and instruments. Most importantly, it creates a yield curve with fixed rates protected

against risks that could increase the costs of adjustable bonds and debt instruments.

The yield curve’s significance extends beyond the information it conveys to the public; it is

also a vital tool for structuring government debt and ensuring the proper functioning of public

and private debt markets. For example, Meade Kuribreña et al. (2012) explains that in 2012,

the yield curve reflected market participants’ positive sentiment toward Mexico’s debt and their

growth expectations.

This thesis studies the Mexican and United States yield curves. While the financial markets

of both countries are vastly different, they experience similar macroeconomic shocks at specific

points in time. Analyzing both curves allows us to observe the differences in yield curve move-

ment between two countries with distinct market risks and monetary policies. The sovereign

bonds that construct the yield curves for both countries have identical maturities, except for the

2-year maturity bond, which only appears in the United States. Thus, the main differences are

the bond yields and the premiums they comprise. Additionally, the United States developed the

instruments that construct their yield curve earlier than Mexico.

The yield curve serves as a versatile information instrument. It is highly correlated with a

country’s macroeconomic conditions, making it an effective information transmitter. Developed

countries require a proper yield curve with various maturities, and market participants must

examine it for insights into investments and credit structuring.
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2.1. Calibrating the Model

This thesis describes the relevance and multiple uses of the Nelson-Siegel Model. This model

and its components can forecast and explain the yield curve dynamics. Within this research,

we will look at how the Nelson-Siegel dynamic factors model has behaved in the last 13 years

for Mexico and the United States; our objective is to identify any possible shortcomings of the

model and suggest some guidelines on the appropriate way to calibrate to have the most accurate

forecast possible.
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3. The Nelson-Siegel Model

The forward rate, f(t, τ), is the expected future interest rate for a particular period starting at

time t and lasting for τ periods. According to the expectations hypothesis, the long-term interest

rates can be viewed as the geometric average of the expected future short-term rates. This

hypothesis underpins much of the theoretical framework for yield curve modeling.

Nelson and Siegel created a model to capture the yield curve’s movements using a small

number of parameters by modeling the instantaneous forward rate as a function of time to ma-

turity (τ ). The forward rate function is:

f(t, τ) = β0 + β1exp(−λτ) + β2τexp(−λτ) (3.1)

Here, β0 represents the long-term level of interest rates, β1 captures the short- to medium-

term slope and β2 reflects the curvature of the yield curve. The decay parameter λ controls the

rate at which the influence of β1 and β2 diminishes with maturity.

The yield to maturity, y(t, τ), which is the average of the forward rates up to maturity τ , can

be derived by integrating the forward rate function:

y(t, τ) =
1

τ

∫ τ

0

f(t, u)du = β0+β1(
1− exp(−λτ)

λτ
)+β2(

1− exp(−λτ)

λτ
−exp(−λτ))+ϵt(τ)

(3.2)

This model reduces the complexity of the yield curve to a few interpretable parameters,

providing a robust tool for both fitting historical yield curve data and forecasting future interest

rates. The parameters β0, β1, and β2 can be interpreted as follows: β0: The long-term level factor

influencing the overall height of the yield curve. β1: The slope factor affecting the difference
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between short-term and long-term interest rates. β2: The curvature factor, which measures the

extent to which the yield curve bends or arches. Building on the Nelson-Siegel framework,

Diebold and Li (2006) introduced a dynamic version of the model to better capture the time-

varying nature of the yield curve parameters. They proposed treating β0, β1, and β2 as time-

varying factors, modeled using auto-regressive processes. This dynamic factor model allows the

parameters to evolve in time, more accurately representing the changing economic environment.

The state-space representation of the Diebold and Li model is as follows:

yt(τ) = β0,t + β1,t(
1− exp(−λτ)

λτ
) + β2,t(

1− exp(−λτ)

λτ
− exp(−λτ)) + ϵt(τ) (3.3)

β0t = α0 + ϕ0β0,t−1 + η0t

β1t = α1 + ϕ1β1,t−1 + η1t (3.4)

β2t = α2 + ϕ2β2,t−1 + η2t

Where ϵt(τ) represents measurement errors, and ηit are white noise processes capturing

the innovations in the factors. This formulation allows the factors to follow a first-order auto-

regressive process (AR(1)), making it possible to forecast the future values of the yield curve.

A critical component of the Nelson-Siegel and Diebold-Li models is the decay parameter λ.

The choice of λ affects how quickly the influence of the slope and curvature factors decays with

maturity. Diebold and Li fixed λ at 0.0609, a value that provided a good fit for the United States

yield curve data. Figure 3.1 represents how the beta loadings behave given this λ value. If we

focus on the β3 loading we can see that it reaches maximum curvature on the 30 months mark,

this goes by what Diebold and Li (2006) propose. However it seems logical that not all actual

yield curves will behave this way.

Diebold and Li used a two-step procedure to estimate the parameters. First, they estimated

the parameters β0t, β1t, and β2t at each point in time using non-linear least squares. Second, they

8



Figure 3.1: Nelson-Siegel loadings with λ = 0.0609.
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Source: Own elaboration based on Diebold and Li (2006).

modeled these estimated parameters as auto-regressive processes and estimated the parameters

of these processes using AR(1).

The dynamic Nelson-Siegel model enables forecasting future yield curves by predicting the

future values of the latent factors β0t, β1t, and β2t. This is achieved by applying the estimated

autoregressive models to project the factors forward. The forecasted yield curve at time t+ h is

then constructed using the predicted values of the factors:

ŷt+h(τ) = β̂0,t+h+ β̂1,t+h(
1− exp(−λτ)

λτ
)+ β̂2,t+h(

1− exp(−λτ)

λτ
−exp(−λτ))+ ϵt(τ) (3.5)

Diebold and Li demonstrated that their dynamic Nelson-Siegel model provides a more ac-

curate long-term forecasts than traditional benchmarks such as random walk and VAR models.

The ability to accurately forecast the yield curve has significant implications for bond portfolio

management, monetary policy analysis, and financial risk management.
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3.1. The Literature

The yield curve is essential for understanding macroeconomic outlooks, debt dynamics, and

investment strategies. Forecasting the yield curve enables us to anticipate future economic con-

ditions and make informed decisions. Over the years, various models for yield curve forecasting

have emerged. This section explores these diverse models, highlighting their mechanisms and

implications for accurate yield curve prediction. Moreover, we review the applications and mod-

ifications of the Nelson-Siegel model throughout the literature.

Initially, the field was impacted by the innovative work of Nelson and Siegel (1987), who

introduced a parsimonious approach to modeling the yield curve. They aimed to create a model

that could capture the different shapes the yield curve can take—monotonic, humped, and S-

shaped—summarizing it in just a few parameters. Their empirical results demonstrated that the

model could explain 96% of the variation in U.S. Treasury Bill yields across different maturities

during the period 1981-1983. Additionally, the model had high predictive power when forecast-

ing long-term Treasury bonds. Based on its results, the Nelson-Siegel model has been adopted

in academic research and practical financial analysis.

Campbell (1995) examined the expectations hypothesis and its relation to bond yields using

the Nelson-Siegel model. They tested the hypothesis that long-term interest rates reflect market

expectations of future short-term rates. By fitting the model to historical yield data, they assessed

how bond yields incorporated expectations of future economic conditions. The study found

that the Nelson-Siegel model effectively captured the expectations embedded in bond yields,

supporting the hypothesis and demonstrating the model’s practical value for financial forecasting

and policy analysis.

Kim and Wright (2005) utilized a three-factor term structure model to estimate the decom-

position of U.S. Treasury yields, expanding on the work of Duffie and Kan (1996) and Duffee

(2002). Their model included no-arbitrage conditions to ensure correct bond pricing across dif-

ferent maturities and incorporated inflation data to better understand the factors driving interest

rates. Applied to U.S. Treasury yields since 1990, the model indicated that a significant por-

tion of the decline in long-term yields and distant-horizon forward rates since mid-2004 could
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be attributed to a decrease in term premiums, with approximately two-thirds of the decline in

nominal-term premiums due to a reduction in real-term premiums.

Building on the Nelson-Siegel model, Diebold and Li (2006) introduced a dynamic factor

modification that innovates the Nelson-Siegel exponential components framework. They fo-

cused on parsimoniously representing the yield curve through three parameters: level, slope,

and curvature. By transforming the yield curve into three time-varying factors and forecasting

using an AR(1) process, they found that at the one-year horizon, the model was quite effective in

forecasting the structure of the curve, outperforming traditional VAR(1), AR(1), random walks

models and other methodologies used at the time.

Elizondo (2017) proposed forecasting the yield curve in Mexico using an affine model that

integrates exogenous factors derived through principal component analysis for forecasting in-

terest rates over one to sixty months. This model employs an affine framework aligning with

the no-arbitrage condition. Using state variables following a VAR(1) process, Elizondo estab-

lished a linear relationship essential for forecasting across different maturities. Her methodology

showed better performance than traditional models such as random walks, AR(1), and VAR(1)

models.

Haubrich et al. (1996) explored the yield curve’s predictive power for real economic growth

using the Nelson-Siegel model. They analyzed the relationship between the yield curve’s com-

ponents and future economic activity, assessing the model’s performance in forecasting real

Gross Domestic Product (GDP) growth. The results indicated that the Nelson-Siegel model

strongly predicted economic growth, outperforming naive forecasts and other traditional indica-

tors.

Koopman et al. (2010) extended the traditional Nelson-Siegel framework by introducing

time-varying parameters, allowing the level, slope, and curvature factors to evolve. This mod-

ification provided a more flexible and accurate representation of interest rate movements. The

study highlighted the Dynamic Nelson-Siegel model’s superior performance in forecasting in-

terest rates, particularly in capturing the effects of macroeconomic shocks and policy changes

on the yield curve.

Christensen et al. (2011) developed an affine arbitrage-free version of the Nelson-Siegel
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model, ensuring adherence to the no-arbitrage condition for a more consistent and theoretically

sound representation of the term structure. This model provided a superior fit to historical yield

data compared to the traditional model, leading to greater consistency with financial theory and

improved predictive accuracy.

Coroneo et al. (2016) explored the presence of macroeconomic factors in the yield curve

that are not captured by traditional components. By integrating macroeconomic data into the

Nelson-Siegel framework, they enhanced the model’s explanatory power and forecasting accu-

racy. The study revealed that inflation and output growth significantly influenced the yield curve

beyond the traditional components, improving the model’s fit to historical data and predictive

performance.

Kim et al. (2020) combined the Nelson-Siegel model with machine learning techniques to

predict the dynamics of credit default swap (CDS) spreads. Leveraging the parsimonious nature

of the Nelson-Siegel model, they captured the term structure of CDS spreads through its level,

slope, and curvature components. This hybrid approach incorporated non-linear relationships

and complex patterns in the data, significantly improving the accuracy of CDS spread forecasts.

Lastly, Umar et al. (2022) utilized the Nelson-Siegel model to investigate the interplay be-

tween sovereign yield curves and oil price shocks. By decomposing the yield curve into its

fundamental components, they analyzed how oil price shocks influenced the yield curve’s level,

slope, and curvature across different maturities. The study found significant spillover effects,

particularly on the level component, highlighting a direct link between commodity prices and

long-term economic expectations.
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4. Data

For this analysis we will use daily yields for sovereign bonds in the United States and Mexico.

The data for the daily par treasury yields of the United States was gathered from the Treasury

Department and contains a total of 3254 observations, this accounts for all working days from

January 4th, 2010, up until January 3rd, 2023, and contains information for the 1, 3 and 6 months

maturities and the 1, 2, 3, 5, 7, 10, 20, and 30-year maturities for a total of 11 maturities. In the

Mexican case the data comes from PiP Latam a valuation and pricing corporation. It contains

679 observations that account for the weekly outputs of this information and the data goes from

January 5th 2010 up until January 3rd 2023 and contains information on the 1, 3 and 6 months

maturities and the 1, 3, 5, 7, 10, 20, and 30-year maturities for a total of 10 maturities.

There is an initial discrepancy of maturities, with only ten different ones for Mexico and 11

for the United States; we solve this by interpolating the 2-year maturity using spline. We also

do this for the United States for two reasons: first, we want to apply the same methodology for

both countries to ensure the validity of out results, and second, since we have information on the

two-year maturity for the United States, we can check the accuracy of our spline interpolation

Spline interpolation is a mathematical technique that constructs a smooth curve that passes

through a given set of points. It is beneficial for estimating intermediate values within the range

of the data points. The general equation for spline interpolation involves fitting a piece wise

polynomial function to the data points. For a cubic spline, the interpolation function S(x) is

defined as:

S(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 (4.1)

For each interval[xi, xi+1], where ai, bi, ci, and di are the coefficients determined by the in-
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terpolation process. These coefficients are calculated so that the spline is continuous and smooth

at the data points, ensuring that the first and second derivatives of the spline are also continuous.

Appendix A.5 shows the applied spline methodology.

The following graph we compare the 2-year maturity yield over time for the United States,

alongside its interpolated counterpart.

Figure 4.1: 2-year Spline interpolation for The United States over time.
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Figure 4.1 shows that the spline interpolation closely matches the actual data, ensuring ac-

curate results. We will now move to descriptive statistics and facts about the data.

Table 4.1: Descriptive Statistics for the United States Yields

Statistic 1M 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 20Y 30Y

Mean 0.5740 0.6347 0.7286 0.8238 1.0001 1.2129 1.6065 1.9521 2.2561 2.7573 2.9702
SD 0.8760 0.9408 1.0000 1.0162 0.9676 0.9016 0.7900 0.7426 0.7326 0.7768 0.7671
Min 0.0000 0.0000 0.0200 0.0400 0.0996 0.1000 0.1900 0.3600 0.5200 0.8700 0.9900
Max 4.1700 4.5300 4.7800 4.8000 4.8023 4.6600 4.4500 4.3600 4.2500 4.6900 4.8500
Median 0.1000 0.1200 0.1800 0.2750 0.6245 0.9700 1.5700 1.9800 2.2400 2.7100 2.9800
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Table 4.1 presents the descriptive statistics of United States yields over the past 13 years.

The data reveal significant fluctuations in yields, with changes exceeding four percentage points

across most maturities, indicating multiple economic cycles. Despite this volatility, the yields

remain relatively low, with means ranging from 0.57% to 2.97%.

Table 4.2: Descriptive Statistics for the Mexican Rates

Statistic 1M 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 20Y 30Y

Mean 5.1107 5.2835 5.4282 5.5694 5.7172 5.8402 6.2054 6.4328 6.7275 7.3224 7.4950
SD 1.8020 1.8613 1.9046 1.9195 1.7805 1.5596 1.3185 1.1967 1.0608 0.8594 0.8069
Min 2.2900 2.8600 2.9600 2.9900 3.2216 3.5500 4.1000 4.3000 4.4700 5.0600 5.3200
Max 10.4900 10.7600 10.9000 10.9700 10.7875 10.2100 9.8900 9.8600 9.8700 9.9800 9.9700
Median 4.3500 4.4700 4.6000 4.7500 5.0768 5.3700 5.8600 6.2000 6.5500 7.2400 7.5100
IQR 3.0300 3.0300 3.0450 2.9850 2.7428 2.3800 2.0550 1.8100 1.5500 1.2100 1.1000

Figure 4.2: Mexican sovereign rates over time.

3

5

7

9

11

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

Y
ie

ld
 (

%
)

10Y 30Y 3M 5Y

Source: Own elaboration.

Table 4.2 presents the descriptive statistics of Mexican yields over the past 13 years. The

fluctuations are more pronounced than in the United States, with changes of up to 7 percentage
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points. The yields range from 2.9% to 10.48%. Notably, the maximum yields are higher at

shorter maturities, consistent with the 2022 monetary policy and the inverted yield curve during

that period.

In Figure 4.2, we observe the yield curve movement over time for Mexico. The 3-month

rate represents the short term, the 5-year yield reflects the medium term, and the 30-year rate

indicates the long term. Additionally, the 10-year yield helps illustrate the inversion dynamic.

The graph shows that the most significant movements occur with the 3-month rate. Yield curve

inversions are primarily driven by sharp upward movements in the 3-month yield, rather than

declines in the 10-year yield, which aligns with longer-term maturities.

Figure 4.3: United States Treasury rates over time.
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Figure 4.3 illustrates the yield curve over time for the United States. The 3-month yield

shows minimal movement, reflecting the Federal Reserve’s monetary policy and its goal of

maintaining a 0% interest rate. However, from 2016 to 2020, significant movements occur, par-

alleling Mexico’s pattern and indicating yield curve stress. The 30-year yield exhibits a down-
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ward trend until 2022, when rates begin to rise due to inflation. Similar to Mexico, the United

States’ medium and long-term yields, including the 10-year yield, follow the same dynamic,

however the 3 month-yield follow its own dynamic. The moments of inversion are less clear and

less frequent compared to the Mexican case.

The yield spread is defined as the difference between the 10-year yield and the 3-month yield.

When this difference is negative, the yield curve inverts. Therefore, it is relevant to examine the

dynamics and processes leading to these inversions.

Given the extensive and rich dataset, we can undertake a thorough analysis of the yield

curve’s behavior across various economic cycles, thereby identifying and examining its different

configurations over time and its responses to external shocks. The use of spline interpolation

ensures data completeness, which is instrumental for applying the methodologies delineated in

the subsequent section.
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5. Methodology

5.1. Nelson-Siegel

We employ the dynamic Nelson-Siegel model to fit the yield curve data for both the U.S. and

Mexico. The specific formulation of the model is as follows:

yt(τ) = β0,t + β1,t(
1− exp(−λτ)

λτ
) + β2,t(

1− exp(−λτ)

λτ
− exp(−λτ)) (5.1)

Where y(t) represents the yield at maturity t, and β0, β1, and β2 are the level, slope, and

curvature factors, respectively. The parameter λ governs the exponential decay rate and is crucial

for capturing the different maturity segments of the yield curve. Calculation of the parameters

and betas follows a linear regression with the following form:

rate ∼ 1 +
1− exp(−λτ)

λτ
+ (

1− exp(−λτ)

λτ
− exp(−λτ)) (5.2)

The factors are calculated for each maturity, and subsequently the data frame containing the

maturities and factor values is processed through linear regression. The coefficients resulting

from this process are the Nelson-Siegel parameters for that given point in time.

However, the λ value necessary for the Nelson-Siegel model is ad-hoc to the maturity in

which the curvature or the β2 factor reaches its peak. While Diebold and Li (2006) recommend

using 0.0609 which corresponds to 30 months, this value is not optimal for fitting all datasets.

We estimate the parameters by running a loop that tests 2,500 different λ values, ranging from

0.001 to 25 in increments of 0.01. We choose the parameters and λ that minimize the sum of

squared residuals (SSR), defined by the following equation:
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RSS =
n∑

i=1

(yi − ŷi)
2 (5.3)

Where yi are the observed values of the rates, while ŷi are the rates calculated from the

Nelson-Siegel model parameters, the λ that minimizes this value compared to other λ values

ensures the best fit. This allows us to analyze the model’s limitations and identify the yield

curve shapes it cannot accurately represent.

Once the parameters and λ values are obtained, we use equation 5.1 to calculate the fitted

yields and compare them to the actual values. To evaluate the goodness of fit of the Nelson-

Siegel model, we utilize the R2 metric, which quantifies the proportion of variance in the yield

data explained by the model. The R2 value is calculated using the following equation:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(5.4)

where yi represents the actual yields, ŷi represents the fitted yields, and ȳ is the mean of the

actual yields. This metric provides insight into the model’s explanatory power and adequacy in

capturing the underlying yield curve structure.

Additionally to understand the fitted values from the R2 we provide several comparison of

the parameters of the yield curve. We know that β0, β1, and β2 are the level, slope, and curvature,

but for the actual yields, we calculate these factors as follows:

level = 30yearyield

slope = 10yearyield− 3monthyield (5.5)

curvature = 2× 2yearyield− (3monthyield+ 10yearyield)

While calculating the factors using equations 5.5 provides an approximation of the yield

curve’s dynamics, this approach fails to consider the dynamics across all maturities, as the equa-

tions only include certain maturities. The β factors of the Nelson-Siegel model ensure that all

maturities forming the curve are considered, offering a more comprehensive economic interpre-

tation, as supported by the literature.
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This approach allows us to assess how well the Nelson-Siegel model approximates the yields

and how accurately the parameters describe the characteristics of the yield curve over time. This

forms the basis of our analysis, providing insights into the precision with which the dynamic

Nelson-Siegel model can recreate the yield curve.

5.2. Time Series Cross-Validation

To evaluate the Nelson-Siegel forecasting abilities, we propose a different method for selecting

a λ value appropriate for forecasting the yield curve at different horizons. As we have discussed,

the traditional forecasting process for the yield curve follows the next steps:

1. Transform the yield data to the Nelson-Siegel parameters using linear regression

2. Forecast the β parameters using an AR(1) process

3. Transform the parameters to yields using λ = 0.0609

Once we have obtained the parameters and forecast the beta values, it is crucial to make

a deliberate decision on which λ to use, as yield curves should vary in curvature and shape

depending on economic expectations.

We propose using time series cross-validation to identify a suitable λ value. This method-

ology allows for precise parameter estimation by testing the forecasting process in the month

preceding the actual forecast period. The reason behind using this methodology is that it pro-

vides a simple parameter estimation process that is based on previous data. The factors of the

yield curve are sequential, meaning that the current curve is similar to the previous one and

therefore the λ value is also similar. Cross-validation selects the best fitting λ in time t − 1

which should prove a more accurate value for time t.

First, we divide the dataset into three different subsets: the training set, the testing set, and

the evaluation set. The training set spans one year, the testing set spans one month, and the

evaluation set varies according to the forecast horizon (1, 6, or 12 months).

Additionally, we evaluate this methodology over time using a rolling window approach,

moving one month at a time from the start to the end of the data. After creating the time sets,

the cross-validation process follows these steps:
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1. Transform the actual yield data into Nelson-Siegel parameters as done previously.

2. Use the training data (previously calculated parameters) to forecast the test set using an

AR(1) process.

3. Iterate through λ values to find the one that minimizes the root mean squared error (RMSE)

and store that λ value.

4. Extend the training set β’s to the size of the training set plus the test set.

5. Forecast the evaluation set (1, 6, or 12 months) using an AR(1) process, then calculate the

yields using the stored λ.

6. Calculate the RMSE to assess the effectiveness of the methodology.

Figure 5.1 graphically illustrates the cross-validation process, showing that the final result is

a time series of the RMSE for the forecast.

Figure 5.1: Cross-validation process.
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The AR(1) model’s specification, comes from Diebold and Li (2006). The AR(1) model

is independently applied to the three components (β0, β1, β2), forecasting one year ahead. The

AR(1) process is defined as:

βt+1,i = αi + ϕiβt,i + ϵt,i (5.6)
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where α is the intercept, ϕ is the auto-regressive parameter, and ϵt is the error term. This

approach employs a rolling window methodology, where the initial training period comprises

three years of historical data. Subsequently, the training window is extended annually, and

forecasts are generated iteratively. This technique ensures the model adapts to new information,

providing updated forecasts each year.

To assess the accuracy of the forecasts, we calculate the Root Mean Squared Error (RMSE)

for each model and each forecast observation, segmented by maturity. The RMSE metric is

calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (5.7)

where ŷi are the forecast yields and yi are the actual yields. This metric provides a measure

of the average deviation between the forecast and actual yields, allowing us to evaluate the

precision of the forecasts across different maturities and periods.

To compare with λ set to 0.0609, we follow a similar rolling window forecast process to ex-

tract the RMSE of this specification over time. Figure ?? shows the forecast process using fixed

λ; we omit the testing process and instead directly forecast and evaluate the RMSE, resulting in

another RMSE time series that we will use tom compare accuracy.

Figure 5.2: Cross-validation process using fixed λ.
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5.3. Diebold-Mariano test

Finally, we apply the Diebold-Mariano test to compare the forecast accuracy between models

using the estimated λ and the fixed λ. The Diebold-Mariano test, initially proposed by Diebold

and Mariano (2002), evaluates whether the differences in forecast accuracy between two com-

peting models are statistically significant. The test statistic also provides information about

the accuracy of the forecast model. This thesis uses the Diebold-Mariano test to determine

which model specification is more accurate and which maturities are forecasted more precisely.

Since this thesis compares two model specifications, the Diebold-Mariano test is appropriate for

comparing their forecasting performances. The Diebold-Mariano test statistic is calculated as

follows:

DM =
d̄√

2πf̂d(0)
T

(5.8)

Where d is the mean loss differential, f̂d(0) is the spectral density of the loss differential at

frequency zero, and T is the sample size. This test provides a robust framework for assessing

the relative performance of the yield forecasting methodologies employed in this study.

The following steps summarize the methodology employed in this study: First, we apply

the Nelson-Siegel model to fit the yield curve data for the U.S. and Mexico, capturing the level,

slope, and curvature parameters. Next, we evaluate the goodness of fit by calculating the R2

values.

Subsequently, we use an AR(1) model to forecast the Nelson-Siegel parameters one year

ahead, employing a rolling window methodology. We determine the optimal λ values for yield

calculations using the Newton-Raphson method and a fixed value of 0.0609. We then assess

forecast accuracy by calculating RMSE for each model and observation. Finally, we compare

forecast performance using the Diebold-Mariano test. We do this for 1, 6 and 12 month ahead

forecasts.
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6. Results

Following the previous methodology, we first examine the fitted values of the Nelson-Siegel

Model. We utilized a variation of the Nelson-Siegel function from the YieldCurve library in

R Studio.1 The function computes for larger λ values, calculating factors using ordinary least

squares while iterating through different λ values to minimize the residual sum of squares. Table

6.1 presents the descriptive statistics of λ confirming our proposition that λ values vary from

0.0609, tending to be higher and closer to one. The mean and maximum values indicate that the

curvature through the data peaks within the first 30 months. It is relevant to note that the table

shows a maximum value of 21.51939. Indeed, λ can take values greater than one. Large values

of λ cause the exponential terms to decay more rapidly. This means the influence of β1 and β2

in the yield curve diminishes more quickly as maturity increases. We allowed for these large

values to ensure more accurate results.

Table 6.1: Descriptive Statistics for λ Values for Mexico and the United States

Statistic Mean Median Variance SD Min Max

λ (US) 0.7121973 0.5004548 2.206892 1.485561 0.06061652 21.51939
λ (MX) 0.9939696 0.352779 7.607143 2.758105 0.06061652 21.51939

Once we calculate the factors, we use the dynamic Nelson-Siegel formula to derive the yields

from the factors and compute the R-squared between the actual and calculated yields. Table 6.2

presents the descriptive statistics of the R2. The minimum value highlights a shortcoming of the

Nelson-Siegel Model in fitting certain yield curves, which becomes evident in the time plot of

the R2 values.
1 Credit for the YieldCurve package and functions goes to Segio Salvino Guirreri at

https://github.com/cran/YieldCurve.git
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Table 6.2: Descriptive Statistics for R-squared Values from the Nelson-Siegel Model for the US
and Mexico

Mean Median Variance SD Min Max

R2 (US) 0.9900744 0.9979249 0.0007421216 0.02724191 0.5826492 0.9999346
R2 (MX) 0.936052 0.9895473 0.01446142 0.1202556 0.3306261 0.9998465

Figure 6.1: Comparison of Mexican and United States R squared over time.
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Figure 6.1 illustrates that, despite optimizing the λ value for a better model fit, the Nelson-

Siegel dynamic factors fail to recreate the observed yield curve at specific points. This indicates

the model’s inability to capture all types of yield curves in reality. Notably, the model loses

predictive power on similar dates for the United States and Mexico. We will now examine the

yield curve shapes within the data more closely.

Figure A.1 depicts the various mean shapes of the yield curve and the model’s ability to

reproduce them. We generated plots for the mean yield curve, the mean yield curve when

inverted (i.e., the 3-month yield exceeds the 10-year yield), and yield curves with an R-squared

less than 0.75. Inconsistencies are evident, which changes in the yield spread may explain.

Therefore, we create a series of yield spreads, calculated as the difference between the 10-year

and 3-month yields.
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Figure 6.2: Comparison of Mexican and United States Yield Spread over the R Squared
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Figure 6.2 shows that the loss in R-squared aligns with the yield spread’s decline. In the

Mexican case, a low R-squared is particularly evident during periods of yield curve inversion

(grey bars). This suggests that model re-calibration is necessary to avoid significant forecasting

errors during these periods.

We can employ factor decomposition to understand the model’s shortcomings comprehen-

sively. The Nelson-Siegel model stands out in its ability to describe the yield curve through its

factors; level, slope, and curvature. To derive the equivalent factors for the actual yields, we will

utilize equation 5.5

Figure A.2 reveals that the primary source of turbulence is the curvature component of the

yield curve or β2 in our model. Given its significance, we must observe the behavior of λ for

our forecast. We will thus focus on how the λ value, which maximizes curvature at different

maturities, affects forecast accuracy.

For the AR(1) forecast of the Nelson-Siegel components, Diebold and Li (2006) use a fixed

value of 0.0609. This value maximizes the λ at 30 months and reduces the model’s computa-

tional stress. However, we observe large λ values from the fitted values, indicating that 0.0609

may not always be optimal.

Therefore, we must carefully select the λ value for out-of-sample forecasts. Following our

cross-validation methodology, we will calculate the λ value that minimizes the RMSE. The

cross-validation was conducted for three different forecast horizons: 1, 6, and 12 months, and
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compared using the Diebold-Mariano statistical test.

Appendix A.1 presents the results of the Diebold-Mariano test conducted for each maturity

at each horizon and for both countries. The optimized λ from our cross-validation process con-

sistently improves over the fixed λ at the highest statistical significance across all maturities and

forecast horizons. This finding is crucial as it introduces a new step to the Nelson-Siegel fore-

casting process, resulting in a more accurate forecast and, consequently, more precise deductions

from its parameters.

However, there is a second significant finding in the Diebold-Mariano test statistic. The

tables in Appendix A.1 show that for the United States, the test statistic is lower for shorter

maturities across all forecast horizons, while for Mexico, the opposite is true. It is also no-

table that the spread of the Diebold-Mariano test statistic is larger for the United States than for

Mexico. These findings indicate that it is more accurate to forecast short maturity yields in the

United States, whereas, for Mexico, it is better to forecast long maturity yields. Additionally,

the cross-validation process returns two RMSE series, allowing us to observe forecast accuracy

over time.

Figure A.3 demonstrates the evolution of the RMSE over time. The RMSE values for the

United States are generally lower. In 2017, at a point of low R-squared, the cross-validation

process corrected the model, resulting in better forecasts during stress periods. This is clearer

in the Mexican case, where the period of yield curve stress is longer. Our optimized λ produces

significantly lower RMSE for the forecasts. The improvement in accuracy is more evident in the

1-month and 6-month ahead forecasts compared to the 12-month ahead forecast, observable in

the forecast spikes and the last observations during the yield curve inversion process.

Two additional observations are noteworthy. The forecast process for the United States

shows a relatively high RMSE at the series’ start, particularly from 2012 to 2016. In the Mexican

case, two spikes in RMSE values exist, while for the United States high RMSE seem to indicate

specific yield curve cycles that the model struggles to forecast. For Mexico, sudden changes in

the yield curve hinder accurate cross-validation forecasts.

The results could be explained by various factors. One possible explanation is the mar-

ket’s expectations of monetary policy and the macroeconomic outlook. These expectations can
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rapidly change due to economic surprises or exogenous shocks, causing RMSE spikes as the

curve changes quickly from one month to another. However, the adaptability of the cross-

validation process allows the lambda value to adjust to the new state of the curve in the fol-

lowing month. From our RMSE statistics, we can also deduce why some countries are more

accurately forecasted in short-term maturities rather than long-term, and vice versa. A possible

cause would be the monetary policy of the country. In the case of the United States, for most

of the data analyzed, the yields were close to zero, possibly making the short term more stable

and easier to forecast than the long term, where yields rise. For Mexico, continuous changes in

monetary policy could make the short and medium term less accurate compared to the stability

of long-term rates. Additionally, the lower variance in Mexico’s long-term yields compared to

those of the United States may also contribute to this phenomenon.

Ultimately, the particularities of the yield curves’ behavior could have different explanations

than those theorized in this thesis. However, the objective of this work is not to explain the

sudden movements in RMSE, but rather to make the model more adaptable to shocks of any

nature.
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7. Conclusions

The yield curve is a versatile instrument that conveys information about the economy, market

sentiment, and government debt structure. The Nelson-Siegel model is critical as it decomposes

the yield curve into descriptive parameters, enhancing forecasting accuracy. As reviewed in

Section 3.1, the Nelson-Siegel model offers multiple uses and benefits, making its accuracy

crucial.

This thesis exhibits 13 years of fitted value analysis and forecasting evaluation. The results

indicate that while the model is highly accurate at times, its precision decays at certain points,

rendering it unable to fit specific yield curve shapes.

The initial analysis of the fitted and λ values reveals that the yield curve’s curvature varies in

maturity at the maximum point. Therefore, Diebold and Li’s (2006) recommendation of using

a fixed λ may not be universally applicable. This thesis proposes a cross-validation process for

selecting a λ value. The findings show that cross-validation corrects high RMSE points during

yield curve stress and provides overall better forecasts according to the Diebold-Mariano test.

Additionally, we find that short-term maturities are more accurately forecasted for the United

States, while long-term maturities are more accurately forecasted for Mexico.

These findings hold significant relevance for central bankers and private individuals. For

central bankers, a more accurate forecast of the yield curve, especially one that adapts to yield

curve inversions, is invaluable for monetary policy and anticipating changes in the term structure

of government bonds. Private individuals can also benefit, as an improved yield curve forecast

aids in making better credit and investment decisions and provides insights into a country’s

financial health.

Precise forecasting is an extensive field with continuously emerging models and specifi-
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cations. The Nelson-Siegel model, evolving through academic contributions, exemplifies this

progress. While this thesis presents a valuable modification to the forecasting process, unan-

swered questions still need to be answered, particularly during high RMSE or spike periods and

the role of volatility in each market at different maturities. Addressing these issues is a challenge

and an opportunity for further research and academic contributions.
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A. Appendix

A.1. Deibold-Marinao Tests

Table A.1: Diebold-Mariano Test Results for US - 1 Month Ahead

Test Statistic P Value Better Method Significance Level Maturity

2.959 0.004 Optimized λ *** 1M

3.877 0.000 Optimized λ *** 3M

5.424 0.000 Optimized λ *** 6M

7.734 0.000 Optimized λ *** 1Y

9.545 0.000 Optimized λ *** 2Y

10.100 0.000 Optimized λ *** 3Y

10.219 0.000 Optimized λ *** 5Y

10.206 0.000 Optimized λ *** 7Y

10.192 0.000 Optimized λ *** 10Y

10.233 0.000 Optimized λ *** 20Y

10.337 0.000 Optimized λ *** 30Y
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Table A.2: Diebold-Mariano Test Results for US - 6 Months Ahead

Test Statistic P Value Better Method Significance Level Maturity

2.476 0.015 Optimized λ ** 1M

4.444 0.000 Optimized λ *** 3M

6.610 0.000 Optimized λ *** 6M

8.967 0.000 Optimized λ *** 1Y

10.001 0.000 Optimized λ *** 2Y

10.159 0.000 Optimized λ *** 3Y

10.054 0.000 Optimized λ *** 5Y

9.946 0.000 Optimized λ *** 7Y

9.868 0.000 Optimized λ *** 10Y

9.940 0.000 Optimized λ *** 20Y

10.045 0.000 Optimized λ *** 30Y
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Table A.3: Diebold-Mariano Test Results for US - 12 Months Ahead

Test Statistic P Value Better Method Significance Level Maturity

2.358 0.020 Optimized λ ** 1M

3.845 0.000 Optimized λ *** 3M

5.322 0.000 Optimized λ *** 6M

7.466 0.000 Optimized λ *** 1Y

9.474 0.000 Optimized λ *** 2Y

10.067 0.000 Optimized λ *** 3Y

10.116 0.000 Optimized λ *** 5Y

9.989 0.000 Optimized λ *** 7Y

9.864 0.000 Optimized λ *** 10Y

9.855 0.000 Optimized λ *** 20Y

9.921 0.000 Optimized λ *** 30Y
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Table A.4: Diebold-Mariano Test Results for MX - 1 Month Ahead

Test Statistic P Value Better Method Significance Level Maturity

9.244 0.000 Optimized λ *** 1M

8.332 0.000 Optimized λ *** 3M

8.009 0.000 Optimized λ *** 6M

7.682 0.000 Optimized λ *** 1Y

7.335 0.000 Optimized λ *** 2Y

7.146 0.000 Optimized λ *** 3Y

6.695 0.000 Optimized λ *** 5Y

6.530 0.000 Optimized λ *** 7Y

6.260 0.000 Optimized λ *** 10Y

5.835 0.000 Optimized λ *** 20Y

5.852 0.000 Optimized λ *** 30Y
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Table A.5: Diebold-Mariano Test Results for MX - 6 Months Ahead

Test Statistic P Value Better Method Significance Level Maturity

8.964 0.000 Optimized λ *** 1M

8.446 0.000 Optimized λ *** 3M

8.005 0.000 Optimized λ *** 6M

7.547 0.000 Optimized λ *** 1Y

7.247 0.000 Optimized λ *** 2Y

7.236 0.000 Optimized λ *** 3Y

7.035 0.000 Optimized λ *** 5Y

7.062 0.000 Optimized λ *** 7Y

6.893 0.000 Optimized λ *** 10Y

6.552 0.000 Optimized λ *** 20Y

6.297 0.000 Optimized λ *** 30Y
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Table A.6: Diebold-Mariano Test Results for MX - 12 Months Ahead

Test Statistic P Value Better Method Significance Level Maturity

8.367 0.000 Optimized λ *** 1M

7.813 0.000 Optimized λ *** 3M

7.338 0.000 Optimized λ *** 6M

6.904 0.000 Optimized λ *** 1Y

6.723 0.000 Optimized λ *** 2Y

6.815 0.000 Optimized λ *** 3Y

6.705 0.000 Optimized λ *** 5Y

6.793 0.000 Optimized λ *** 7Y

6.754 0.000 Optimized λ *** 10Y

6.644 0.000 Optimized λ *** 20Y

6.462 0.000 Optimized λ *** 30Y
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A.2. Yield Curve Shapes

Figure A.1: Comparison of Mexican and United States Yield Curves.
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Source: Own elaboration.
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A.3. Factor Decomposition

Figure A.2: Comparison of Mexican and United States Yield Curve Components.

6

7

8

9

10

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

Le
ve

l

Actual Level Fitted Level

(a) MX Level

1

2

3

4

5

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

Le
ve

l

Actual Level Fitted Level

(b) US Level

-2

0

2

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

S
lo

pe

Actual Slope Fitted Slope

(c) MX Slope

-1

0

1

2

3

4

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

S
lo

pe

Actual Slope Fitted Slope

(d) US Slope

-2

-1

0

1

2

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

C
ur

va
tu

re

Actual Curvature Fitted Curvature

(e) MX Curvature

-2

-1

0

1

2

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

C
ur

va
tu

re

Actual Curvature Fitted Curvature

(f) US Curvature

Source: Own elaboration.

40



A.4. RMSE

Figure A.3: RMSE Comparison for US and MX - Fixed Lambda vs Optimized.
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Source: Own elaboration.
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A.5. Spline

The spline interpolation process for the two year yield, involves setting up the data points, such

that xi represents the maturity in months and yi represents the corresponding interest rates. The

spline cubic function S(x), defined as:

S(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

It must follow three conditions to derive the coefficient from the system of equations. The

first is the interpolation condition, ensuring the spline passes through the given data points,

S(xi) = yi and S(xi+1) = yi+1. The second is the continuity condition, ensuring the first and

second derivatives of the spline are continuous at each interior data point, S ′(x−
i+1) = S ′(x+

i+1)

and S ′′(x−
i+1) = S ′′(x+

i+1). The third is the boundary condition, required to uniquely determine

the spline. Examples include natural splines, where the second derivative at the endpoints is

zero, S ′′(x1) = 0 and S ′′(xn) = 0, or clamped splines, where the first derivative at the endpoints

is specified, S ′(x1) = f ′(x1) and S ′(xn) = f ′(xn).

Using the conditions outlined, the coefficients ai, bi, ci, and di for each interval are com-

puted. The spline function S(x) is then evaluated at the maturity x = 24 months to obtain the

interpolated rate.

The interval [xi, xi+1] where xi ≤ 24 ≤ xi+1 is identified as [12, 36] in this case. Using

the data points, the coefficients for the cubic polynomial in this interval are computed by solv-

ing the system of equations defined by the interpolation, continuity, and boundary conditions.

Substituting x = 24 into the cubic polynomial for the interval [12, 36]:

S(24) = a+ b(24− 12) + c(24− 12)2 + d(24− 12)3

where a, b, c, d are the computed coefficients. Resulting in the interpolated rate for the 24

months maturity.
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