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Abstract

A Monte Carlo Expectation-Maximization algorithm for solving structural
models with latent structures is formulated. It combines a Gibbs sampler to
impute the unobserved information in the E-step, a sequential maximization
procedure in the M-step and a stochastic version of Louis’ method to
estimate the Information matrix. I show that such an algorithm has a
number of advantages with respect to traditional methods. First, it does not
require integrating the unobserved information out from the likelihood
function, which reduces the estimation time dramatically and permits to
solve problems involving more than three latent variables. Second, it
reduces the estimation of the vector of slopes to the calculation of a GLS
estimator and numerical optimization is required only to estimate the
elements in the disturbance covariance matrix. Third, it can accommodate
potentially any linear-in-parameters equation system including cross-
sectional models with latent variables, panel data models and stochastic
frontier models. Finally, the estimation of the standard errors by Louis’
method circumvents the limitations associated to the estimation of
numerical Hessians by finite-difference methods.

Resumen

En este paper se formula un algoritmo Monte Carlo EM para estimar
modelos de ecuaciones estructurales con variables latentes. El algoritmo
combina un simulador de Gibbs en la etapa E para simular la información no
observada, un proceso de maximización secuencial en la etapa M, y una
versión estocástica del método de Louis para estimar la matriz de
información. El algoritmo tiene varias ventajas con respecto a los métodos
tradicionales de estimación. Primero, no requiere del cálculo de integrales
en la función de verosimilitud, lo cual reduce dramáticamente el tiempo de
estimación y permite solucionar problemas que involucran más de tres
variables latentes. Segundo, reduce la estimación del vector de pendientes
al cálculo de estimador de MCG, y optimización numérica sólo es requerida
para estimar los elementos en la matriz de covarianzas de las
perturbaciones. Puede se usado para estimar potencialmente cualquier
sistema con ecuaciones lineales en parametros, incluyendo modelos de
corte transversal con variables latentes, modelos de panel, y modelos de
frontera estocástica. Finalmente, la estimación de los errores estándar por
el método de Louis evita los problemas asociados al cálculo del Hessiano
mediante técnicas numéricas tradicionales.
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Introduction

Models involving equation systems with latent structures are abundant in
applied economics literature. Examples include sample selectivity models,
switching regression models, multivariate and nested tobit models,
multivariate and multinomial probit models, and panel data models with
random effects. The use of latent variables gives some level of independence
from the limitations of the observed data to the applied econometrician.
Completely or partially unobserved variables can be added to the empirical
model in order to get a better representation of the phenomenon under
study. However, the use of latent variables does not come without costs. An
important issue is that both the number and the dimensionality of the integral
terms in the likelihood function increase with the number of latent variables
considered. High dimensional integration slows the estimation down and it can
even make the estimation unfeasible in presence of integrals of dimension
greater than three. A second issue arises from the inability of many
conventional optimization algorithms to identify the parameters of these
models even though conditions for formal identification are satisfied.
“Fragile” identification, as it called by Keane (1992), tends to happen when
the objective function shows little variation in a wide range of parameter
values around the maximum, which prevents convergence of gradient-based
algorithms. Finally, the selection of starting values in order to initiate the
optimization routine is a frequent problem in maximum likelihood estimation
of models with latent structures. Consequently, the development of
algorithms with low sensitivity to the selection of starting values (i.e. with a
larger approximation area) is always welcome.

The traditional approaches for estimating 2-equation systems that
involve latent variables have been maximum likelihood and 2-step estimation
methods (Heckman, 1979; Maddala, 1983). The first one is more desirable
because it produces consistent and efficient estimates; however, it is prone to
“fragile” identification and starting value problems. The second one is robust,
but it is not efficient. For equation systems involving three or more latent
variables, maximum likelihood estimation by numerical integration is often
too costly computationally or even unfeasible since quadrature methods for
high dimensional integrals are still in development. This so-called “curse of
dimensionality” has, however, been partially overcome in the last years by
the use of probability simulators (Börsch-Supan and Hajivassiliou, 1993;
Geweke et al., 1994) and Monte Carlo and Quasi-Monte Carlo integration
methods (Sobol, 1998). Still, the focus of these approaches is only making the
integration of the likelihood function feasible, which implies that the
problems of “fragile” identification and starting values remain.
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Instead of placing the attention on calculating the integrals in the likelihood
function, the approach presented in this article focuses on the latent
continuum that generates the observed information. By combining a Monte
Carlo Expectation-Maximization (MCEM) algorithm with a sequential
conditional maximization procedure, I show that the estimation of any system
of linear (in parameters) equations with latent variables can be seen as
equivalent to estimating a system of linear (in parameters) equations with
fully observed information recursively. The use of a MCEM circumvents the
integration problem by imputing the unobserved information using Gibbs
sampling (Casella and George, 1992). Since the use of the Gibbs sampler in
the Expectation step permits “restoring” the continuum, the Maximization
step does not differ much from maximizing the likelihood function of a
standard linear equation system. Complementarily, the use of sequential
maximization steps permit to concentrate the optimization effort on those
parameters that are frequently the hardest to identify, i.e. the elements of
the disturbance covariance matrix. Finally, the MCEM framework confines the
estimates to the parameter space at every iteration of the algorithm and
reduces dependency on starting values. This study generalizes the procedure
developed by Natarajan et al. (2000) for multinomial probit models. Its main
contribution is the implementation of a robust algorithm that exploits
explicitly the structural similarity between models that have been
traditionally estimated by rather ad-hoc methods.

The remaining of this article is organized in the following way. The
next section discusses the meaning of unobserved information in the context
of this article. The second section presents the MCEM algorithm and
exemplifies how it works by estimating a 3-equation problem. The third
section solves the same problem as in the previous section by numerical
integration. The outputs of both approaches are compared. The fourth section
generalizes the algorithm to cover system of structural equations with latent
variables. The fifth and last section gives final remarks.

1.- Unobserved information

For purposes of this article I consider two ways that unobserved information
might enter in econometric estimations: by the existence of missing data, and
by the presence of latent variables. Missing data are observations that the
researcher failed to collect for all the individuals in the sample. Missing
information can originate by multiple ways such as inability to sample the
same unit along different years when constructing a panel data set, or
unwillingness of the respondent to answer specific questions in a survey.
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By latent variable I mean a continuous variable that is not observed
fully; nonetheless, part of the information contained in the variable is
available to the econometrician.

This observed counterpart originates a new variable, whose type (e.g.
dichotomous, polytomous, limited-dependent) will depend on how it relates
to the underlying latent variable.

It must be kept in mind that those variables containing missing data,
although less structured, can also be seen and understood as another kind of
latent variable. As a consequence, the methods that I am about to present in
order to estimate models involving latent variables can be used to deal with
missing information as well.

2.- The Monte Carlo Expectation- Maximization (MCEM) algorithm

In their presentation before the Royal Statistical Society, Dempster et al.
(1977) introduced the Expectation-Maximization (EM) algorithm as an iterative
procedure to compute maximum likelihood estimates “... when the
observations can be viewed as incomplete data.”

The way the notion of “incomplete data” is introduced above is indeed
very general and it is this flexibility in the idea of incomplete data what is
responsible of a good deal of EM algorithm’s broad applicability. To give a
flavor of how the algorithm works consider the following many-to-one
mapping:

( )z Z y y z Y∈ → = ∈

The information z  in Z  is not observed directly but through its observed
realization y  in Y .
In words, z is only know to lie in ( )Z y , the subset of Z  determined by the

equation ( )y y z= , where y  is the observed (measurable) data.

Let the complete data be written as ( ),=x y z , where z  is the
unobserved information. Then the log-likelihood function of the observed
information can be written as,

( ) ( ) ( )
( )

| ln | ln |  
Z y

L L dθ θ θ= = ∫l y y x z (1)

As previously discussed, the integrals present in (1) can make the
maximization of ( )|θl y  cumbersome or even impossible to solve by standard
optimization methods. Instead of trying to solve (1) directly, the EM algorithm
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focuses on the complete-information log-likelihood ( )|c θl x  and maximizes

( )|cE θ  l x  by executing iteratively two steps. The first one is the so-called

Expectation step or E-step, which at iteration m+1 computes

( ) ( )( )| , |m cQ Eθ θ θ =  ly x , where ( )|cE θ  l x  is the expectation of the

complete-information log-likelihood conditional on the observed information

and provided that the conditional density ( )( )| , mf θx y  is known. The E-step is

followed by the Maximization step or M-step, which maximizes ( )( )| ,mQ θ θ y  to

find ( 1)mθ + . Then the procedure is repeated until convergence is attained.
Often, however, this deterministic version of the EM algorithm has also to
deal with hefty integrals in the calculation of the expectations in the E-step.

The stochastic version of the EM algorithm presented here avoids
troublesome computations in the E-step by imputing the unobserved
information conditional on what is observed and on distribution assumptions.
In this approach the term ( )( )| ,mQ θ θ y  is approximated by the mean

( )
1

1 , |
K

(k)

k
Q

K
θ

=
∑ z y , where the (k)z  are random samples from ( )( )| ,mf θx y  (Wei

and Tanner, 1990). No integrals need to be estimated in this procedure. Once
the unobserved information is imputed, the latent continuum is made
“visible” and the estimation can be carried out as we were solving a standard
system of linear equations.

2.1.- Implementing the Monte Carlo EM algorithm

I illustrate the use of the MCEM algorithm by solving the following 3-equation
system,

*
1 1 1 1
*
2 2 1 2 2 2
*
3 3 1 3 3 3

i i i

i i i i

i i i i

y x
y y x
y y x

β ε

γ β ε

γ β ε

= +

= + +

= + +

(2)

where 1iy  is dichotomous, and 2iy  and 3iy  are censored from below at zero,
i.e.

*
1

1 *
1

1 if 0
0  if 0 

i
i

i

y
y

y
 >

= 
≤

* *
2 2

2 *
2

 if 0
0  if 0 
i i

i
i

y y
y

y
 >

= 
≤

* *
3 3

3 *
3

 if 0
0  if 0 
i i

i
i

y y
y

y
 >

= 
≤
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Equation system (2) contains only the observed counterparts of the latent
variables on the right-hand side of the equations. It is clear that more general
cases should consider both latent and observed endogenous regressors. The
discussion of those cases will be delayed until Section 4. In the meantime the
use of simpler models like (2) is more suitable to introduce the Monte Carlo
EM algorithm. This will allow us to concentrate on methodological aspects and
not get distracted by complications in the model structure.
The disturbance terms in (2) are assumed to have a trivariate normal
distribution ( )0,N Σ  with covariance matrix

1 2 1 3 1 2 2 1 3 3

1 2 2 2 3 1 2 2 2 2 3 2 3

1 3 2 3 3 1 3 3 2 3 2 3 3

2 2

2 2

1 1ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε

σ σ ρ σ ρ σ

σ σ σ ρ σ σ ρ σ σ

σ σ σ ρ σ ρ σ σ σ

   
   

Σ = =   
      
   

(3)

where 
1

2 1εσ =  is the usual normalization to ensure identification of the

coefficients in an equation with a dichotomous dependent variable and 
k lε ερ  is

the correlation coefficient between kε  and ( )  , 1, 2,3l k lε = . I applied the
method on data from a survey administered to Maryland farmers in 1998 in
order to evaluate a conservation cost-sharing program. For a detailed
description of the survey see Lichtenberg and Smith-Ramirez (2004).

There are two forms of the structural model for the system in (2)
depending on the value of the observed counterpart of *

1iy , i.e. e.

1 1iy = 1 0iy =
*
1 1 1 1
*
2 2 2 2 2
*
3 3 3 3 3

i i i

i i i

i i i

y x
y x
y x

β ε

γ β ε

γ β ε

= +

= + +

= + +

*
1 1 1 1
*
2 2 2 2
*
3 3 3 3

i i i

i i i

i i i

y x
y x
y x

β ε

β ε

β ε

= +

= +

= +

(4)

According to (4) the parameters 2γ  and 3γ  only represent shifts in the
intercepts of the second and third equations when 1 1iy = . Thus, under the
normality assumption, the complete data likelihood function can be written
as,

( ) ( )
( )

' 1

1 2 3 1 23 2
1, | , , exp

22
i i

i i i
i i

L f y y y
π

−  Σ
Σ = = −  

Σ   
∏ ∏ ε ε

θ x
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Where ( )1 2 2 3 3, , ,β γ β γ , β=θ , 

*
1 1 1 1

*
2 2 2 1 2 2

*
3 3 3 1 3 3

i i i

i i i i i

i i i i

y X
y y X
y y X

ε β
ε γ β
ε γ β

 − 
  = = − −  

   − −   

ε

Correspondingly, the complete information log-likelihood function and its
expectation are,

( ) ( ) ( )1 '3 1, | ln 2 ln tr
2 2 2

c
i i

i

N Nπ −Σ = − − Σ − Σ∑l θ ε εx

( ) ( ) 1 '3 1, | ln 2 ln tr
2 2 2

c
i i

i

N NE Eπ −    Σ = − − Σ − Σ     
∑l θ ε εx (5)

Where N  is the total number of observations and the expectation operator
indicates expectation conditional on observed information and distributional
assumptions. The E-step is straightforward from equation (5) and, at iteration

1m + , requires the calculation of,

( ) ( )( ) ( ) ( ) ( ) ( )

( )

( )
*
1

2

'* *
1 1 1 1 1 1

' * *
2 2 1 2 2 2 2 1 2 2
* *
3 3 1 3 3 3 3 1 3 3

1 1

2

| , , | , , | , ,

                     
i

i

i i i i
m m m m m m

i i i i i j i i j

i i j i i j

m
iy

m
i y

y X y X
Q E E y y X y y X

y y X y y X

X

β β
γ β γ β
γ β γ β

µ β

µσ

   − −
    Σ = Σ = − − − − Σ        − − − −    

−

= +

θ θ ε ε θ θy y y

( )

( )

( )

( )

( )

*
1

* *
2

* *
3 3

'

1 1

2 1 2 2 2 1 2 2

3 1 3 3 3 1 3 3

i

i

i i

m
iy

m m
i i i iy

m m
i i i iy y

X

y X y X

y X y X

µ β

γ β µ γ β

µ γ β µ γ β

  −
  
  − − − −
  
    − − − −  

 (6)

where ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * * * *
1 1 2 1 3

* * * * *
1 2 2 2 3

* * * * *
1 3 2 3 3

2

2 2* * *
1 2 3

2

Cov , , | , ,
i i i i i

i i i i i

i i i i i

m m m
y y y y y

m m m m m m
i i i i y y y y y

m m m
y y y y y

y y y

σ σ σ

σ σ σ σ

σ σ σ

 
 
 = Σ =  
  
 

θ y (7)

and 

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

*
1

*
2

*
3

*
1

*
21

*
3

| , ,

| , ,

| , ,

i

i

i

m mm
iy

m m m
iy

m m m
iy

E y

E y

E y

µ

µ

µ

    Σ   
    = Σ   
      Σ    

θ

θ

θ

y

y

y

(8)

The covariance matrix ( )2 m
iσ  in (7) and the vector of means in (8) can be

estimated by Gibbs sampling (Casella and George, 1992) from the joint

distribution of ( )* * *
1 2 3, ,i i iy y y  conditional on parameters ( ) ( )( ),m mΣθ  and the

observed information y . It is useful determining first the distribution of



A Monte Carlo EM...

D I V I S I Ó N  D E  E C O N O M Í A 7

( )* * *
1 2 3, ,i i iy y y . After recalling that 2γ  and 3γ  are only structural shifts in the

second and third equations of (4) and given the distribution of the
disturbances in (3), the distribution of ( )* * *

1 2 3, ,i i iy y y  at iteration m  is
( ) ( )( ),m m
iN µ Σ , where,

( )

( )

( ) ( )

( ) ( )

1 1

2 1 2 2

3 1 3 3

m
i

m m m
i i i

m m
i i

X

y X

y X

β

µ γ β

γ β

 
 

= + 
  + 

and ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 3

1 2 2 2 3

1 3 2 3 3

1 m m

m m m m

m m m

ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

σ σ

σ σ σ

σ σ σ

 
 
 Σ =
 
 
 

(9)

2.2.- The Gibbs sampler

The moments in (7) and (8) could be easily calculated if the marginal densities
(conditional on parameters and observed information) of *

1iy , *
2iy , and *

3iy
were known. However, obtaining those marginal densities may require solving
hefty integrals. Instead of tackling the problem by integration, the Gibbs
sampler provides a way to generate samples from the marginal distributions
without requiring analytical expressions for the densities. The moments of
interest can then be estimated from the simulated samples.

The implementation of the Gibbs sampler is straightforward using the
definitions in (9). Before proceeding, let consider the following notation,

*
1

*
1*

| *
1

*

  
 

i

j i
i j

j i

ki

y

y
y

y

−
−

+

 
 
 
 
 =
 
 
 
 
 

M

M

y

1

1
|

1

 

  

i

j i
i j

j i

ki

X

X
X

X

−
−

+

 
 
 
 

=  
 
 
  
 

M

M

X ( )

( )

( )

( )

( )

1

1

1

  

 

m

m
jm

j m
j

m
k

γ

γ

γ

γ

−
−

+

 
 
 
 
 =  
 
 
  
 

M

M

γ ( )

( )

( )

( )

( )

1

1

1

  

 

m

m
jm

j m
j

m
k

β

β

β

β

−
−

+

 
 
 
 
 =  
 
 
  
 

M

M

β

where 1,...,j k=  and k  is the number of equations in the system to estimate
(equal to 3 in our example).

The implementation of the sampler begins with determining the
distribution of each *

jiy  conditional on the value of the rest of the dependent

variables *
|i j−y . It is well known that, under the normality assumption, this
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conditional distribution is univariate normal. Thus, means | ( )ji i jµ −  and

variances 2
|j jσ −  at the 1m +  iteration can be estimated by,

( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )

* *
| ( ) |

1
* * * *

| | | |

, ,

      cov , cov

m m m
ji i j ji i j

m m m m m
ji j ji i j i j i j j i j j

E y

X y

µ

β

− −

−

− − − − − −

= Σ

 = + Σ Σ − −  

θ

γ β

y

y y y X
          (10)

( ) ( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

2 * *
| |

1 '
* * * * * *

| | |

var , ,

    var cov , cov cov ,

m m m
j j ji i j

m m m m
ji ji i j i j ji i j

y

y y y

σ − −

−

− − −

= Σ

 = Σ − Σ Σ Σ  

θy

y y y
          (11)

The next step is to sample iteratively from these conditional distributions in
order to simulate a sample for the unobserved values of each *

jiy . These
samples will in turn allow estimating the values in (7) and (8). Since the
simulations for *

iy  must be done conditional on its corresponding observed
information iy , the implementation procedure depends on the structure

imposed by iy  on *
iy .

The observed counterpart of *
1iy  in the first equation in (2) is

dichotomous with *
1iy  being positive if 1iy  equals one and non-positive if 1iy

equals zero. Accordingly, it is necessary to simulate *
1iy  from a normal

distribution with mean ( )
1 | ( 1)
m
i iµ −  and variance ( )2

1 | 1
m
iσ −  truncated below at zero if 1iy

equals one and truncated above at zero if 1iy  equals zero.

Variables *
2iy  and *

3iy  are both observed when having positive values.
Consequently, it is only necessary to simulate them when 2 0iy =  and 3 0iy = ,
respectively. Thus, these variables must be simulated from normal
distributions with means ( )

| ( )
m
ji i jµ −  and variances ( )2

|
m

ji jσ −  truncated above at zero

when ( ) 2,3jiy j =  equals zero. When 0jiy >  set *
ji jiy y= .

Sampling from a truncated normal distribution can be easily
accomplished by using the inverse distribution method. As an example,
assume ( )* 2,y N µ σ�  and y  is limited to be in the interval [ , ]l u . Then

according to Devroye (1986, p39), a random draw from the truncated normal
distribution of y  is given by,

( )( )1
l u ly P U P Pµ σ −= + Φ + − (12)
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Where l
lP µ
σ
− = Φ 

 
, u

uP µ
σ
− = Φ 

 
 and U  is a random draw from the

standard uniform distribution. MATLAB’s pseudo random generator (Moler,
1995) was used to simulate the sampling from U  in this study. As an
alternatively to the use of pseudo random numbers in the sampling, the use of
randomized low-discrepancy sequences or quasi-random numbers has been
proposed in order to reduce Monte Carlo noise and speed up convergence
(Liao, 1998; Jank, 2004).
A complete set of starting vectors *

iy  is necessary to begin the Gibbs sampler.

In this study *
jiy  was set equal to zero ,i j∀  when the observed variable was

dichotomous and equal to jiy  when censored. The simulation was then

repeated iteratively until completing a sequence 
( )*(1) *( ),...,
mK

i iy y , where ( )mK  is
a number large enough to ensure convergence. Following Wei and Tanner
(1990), it is more efficient to begin with a small ( )1K  and progressively
increase ( )mK  as m  increases. A simple linear rate of increment was used
here. Then eliminate a number burnk  of simulations from the beginning of the
sequence. The remaining observations in the sequence are used to estimate

( )2 m
jiσ  and ( )m

jiµ  in (7) and (8) according to,

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * * * *
1 1 2 1 3

* * * * *
1 2 2 2 3

* * * * *
1 3 2 3 3

2

2 2* * *
1 2 3

2

ˆ ˆ ˆ

ˆ ˆ ˆcov , , | , ,

ˆ ˆ ˆ

i i i i i

i i i i i

i i i i i

m m m
y y y y y

m m m m m m
i i i i y y y y y

m m m
y y y y y

y y y

σ σ σ

σ σ σ σ

σ σ σ

 
 
 = Σ ≈  
  
 

θ y

Where ( )
( ) ( ) ( )

( )

* *
*( ) * *( ) *

1

1ˆ
1

m

ri si
burn

K
m k k

ri ri si simy y
k kburn

y y y y
K k

σ
= +

= − −
− −

∑

( ) ( ) ( )
( )

( )
( )

*
** *

1

1| , ,
m

ji
burn

K
m m m k

ji ji jimy
k kburn

E y y y
K k

µ
= +

 = Σ ≈ =  −
∑θ y

Notice that when *
jiy  is fully observed (i.e. when *

ji jiy y= ) then ( )
* *ˆ 0
ri si

m
y y

σ =  and
( )

*     , ,
ji

m
ijy
y m r sµ = ∀ .
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2.3.- Maximization Step

After obtaining ( )2 m
jiσ  and ( )m

jiµ  we are ready to move to the Maximization step.
From (5) and (6) we maximize,

( ) ( )( ) ( ) ( ) ( )( )13 1, | , ln 2 ln tr | , ,
2 2 2

m m m mc
i

i

N NE Qπ −  Σ Σ = − − Σ − Σ Σ    
∑l θ θ θ θ, y y    (13)

Note that the use of the Gibbs sampler has permitted us to circumvent the
estimation of the high dimensional integrals present in (21). Also notice that,
except for the covariance matrices ( )2 m

iσ  present in the terms, the expression
in (13) is the log-likelihood function of a system of linear equations, where
the unobserved information has been replaced by its expected values. Thus,
in a certain sense the latent continuum has been restored. Similarly to Meg
and Rubin (1993) and Natarajan et al. (2000), I use two conditional
maximization steps in order to maximize the expression in (13) with respect
to θ  and the elements in Σ . The first maximization step maximizes (13) with

respect to θ  conditional on 
( )mΣ  to produce 

( )1m+θ . This is followed by a

maximization on the elements of Σ  conditional on the recently updated 
( )1m+θ

in order to obtain 
( )1m+Σ .

It is clear from (6) that the maximizer in the first conditional
maximization is the generalized least square estimator,

( ) ( )( ) ( )( ) ( )
*

11 11 ' 'm m m m
d N d d N y
X I X X I µ

−− −+  = Σ ⊗ Σ ⊗  
% % %θ

(14)

where,

1

2

3

0 0
0 0
0 0

d

X
X X

X

 
 =  
  

% %

%
, 2X%  and 3X%  are the matrices [ ]1 2  iy XM  and [ ]1 3  iy XM

respectively, NI  is the identity matrix of dimension N  and 
( )

*
m
y

µ
 is a column

vector of dimension Nk  constructed by stacking the elements 
( )

*
ji

m
y

µ
 from (8) in

the following way,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )* * * * * * * *
11 12 1 21 2 31 3

'
, ,..., , ,..., , ,...,

N N N

m m m m m m m m
y y y y y y y y

µ µ µ µ µ µ µ µ=
(15)
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After plugging (14) in (13), 
( )1m+Σ  is obtained by maximizing,

( ) ( )( ) ( ) ( ) ( ) ( )( )1 113 1| , ln 2 ln tr | , ,
2 2 2

m m m m mc
i

i

N NE Qπ+ +−  Σ Σ = − − Σ − Σ Σ    
∑l θ θ θ, y y

(16)

with respect to the ( )3 3 1 / 2 2 5− + =  different elements in Σ . The
maximization of (16) can be easily accomplished with the routine FMINUNC in
Matlab. Unlike the log-likelihood function in (21), the function in (16) is
simple enough to obtain an analytical expression for its gradient. This is useful
since no time need to be spent in a numerical estimation of the gradient by
the optimization routine. Contrasting with the time required to maximize a
function like (21), the calculation of (14) and the maximization of (16)
consume almost no time (less than 0.2 seconds when using the routines
implemented here).

2.4.- Convergence issues and stopping rules

Literature discussing convergence of the MCEM is scarce and it suggests that
MCEM convergence relies mainly on properties of the deterministic EM
algorithm and the Gibbs sampler. Convergence of the EM algorithm is
discussed by Dempster et al. (1977), Boyles (1983) and Wu (1983) and
convergence properties of the Gibbs sampler are studied in Geman and Geman
(1984) and Casella and George (1992). In one of these studies, Wu (1983)
clarifies a common misconception about the superior properties of the EM
algorithm to converge to a global maximum. He shows that, like other
maximization methods, the EM algorithm converges monotonically to some
stationary point of a bounded log-likelihood function; however there is no
guarantee that point is the global maximum. Consequently, the EM algorithm
is susceptible to starting value problems and may converge to a local
maximum, a saddle point, or even may not converge to a unique optimum,
getting trapped in a connected set of local maxima (e.g. a plateau in the
objective function) instead.

In the same study cited above Wu shows that if the log-likelihood
function is well behaved and it has only one stationary point (a maximum)
then the EM sequence will converge to the unique maximizer. This property
has two immediate implications for unimodal and differentiable log-likelihood
functions. First, the EM algorithm has a greater approximation area to the
global maximum or, in other words, its estimates are less sensitive to starting
values than other optimization techniques. Second and directly related to the
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first implication, the EM estimates are confined to lie in the parameter space
at every iteration. Consequently, problems with estimates of the disturbance
covariance matrix like negative variances or correlation coefficients with
absolute values greater than one (which are frequent under Newton and
Quasi-Newton techniques) do not happen when using the EM algorithm.

Different sets of starting values were used in this work to reduce the
possibility of missing the global maximum. For a quite broad array of starting
values, the MCEM algorithm implemented as above always converged to the
same maximizer and always kept the estimates in the interior of the
parameter space.

Some closely related issues must be discussed before finishing the
implementation of the MCEM algorithm. They are the criteria to use in order
to determine the size of the Gibbs sample ( )mK  and to determine when
convergence has been attained. Wei and Tanner (1990) have indicated that it
is inefficient to begin with large Gibbs samples since MCEM estimates are
likely to be far from the true maximizer during the first iterations. Rather it is
more reasonable to begin with small samples and make ( )mK  an increasing
function of m  in order to reduce the Monte Carlo error as the algorithm
approaches the maximizer. However, there is not a single criterion about the
way ( )mK  must be increased at every iteration.

Some approaches consider separately the issues of determining the
optimal size of the Gibbs simulation and monitoring convergence. Thus,
McCulloch (1997) considers rather abrupt increments in the size of the Gibbs
sample every time that m  had achieved certain arbitrary values, while
McCulloch (1994) uses a linear rate of increment. Convergence monitoring in
these works is accomplished by plotting the expected log-likelihood versus
iteration number and the algorithm is stopped manually when the process is
observed to stabilize (Wei and Tanner, 1990; Natarajan et al., 2000).

More elaborate approaches consider evaluating the Monte Carlo error
at iteration m  and use that estimation both to determine ( )1mK +  and to
evaluate convergence. These methods can be classified either as likelihood-
distance-based or as parameter-distance-based depending on whether they

focus on likelihood differences ( )( ) ( )( )1j jc cE E −−      l lϑ ϑ  or parameter

differences ( ) ( )1j j−−ϑ ϑ , where ( )jϑ  is the estimation of the parameter vector

at iteration j . The idea is that if parameter or likelihood differences show
variation no greater than the Monte Carlo error then the estimation has been
saturated by random variation and the simulation size must be increased in
the next iteration. In a complementarily way, a stopping rule can be
implemented by establishing a target level for the Monte Carlo error.
Examples of the likelihood-distance-based approach can be found in Chan and
Ledolter (1995) and Eickhoff et al. (2004). Probably the sounder parameter-
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distance-based approach belongs to Booth and Hobert (1999). They use a
Taylor series approximation to construct a confidence ellipsoid around ( )1m+ϑ ,
where the length of the ellipsoid axis on every dimension of the parameter
space is a measure of the MC error on the respective dimension. Thus, if the
estimate ( )mϑ  is contained in the ellipsoid, the current estimate ( )1m+ϑ  is
swamped in MC error and ( )1mK +  must be increased.

This study uses a linear rate of increment for the size of the Gibbs
sample and a stopping ruled based both on likelihood and parameter
distances. The idea is simply to automate the plotting method of Wei and
Tanner (1990) by introducing the following criteria:

( )( ) ( )( )
( )( )

1

1

510
j j

j

M

j M J

c c

c

E E

E

−

−

−

= −

−       <
  

∑
l l

l

ϑ ϑ

ϑ
(17)

( ) ( )

( )

1
3

1max 10
j jM
k k

jk j M J k

ϑ ϑ
ϑ

−
−

−
= −

− 
< 

  
∑

where ( )j
kϑ  is the estimate of the k  component of the parameter vector at

iteration j, M is the current number of iterations, and J is a researcher
choice. In this example J was set equal to 0.25 M× . The algorithm was
stopped only when both criteria were satisfied for at least ten consecutive
iterations. This last requirement was introduced to avoid false convergence
due to the tendency of the MCEM algorithm to stall temporarily before
reaching the maximizer. The criteria in (17) are simple to implement and,
somewhat, they are more stringent than any of those presented in the articles
mentioned above and may increase unnecessarily the number of iterations
required for convergence. However, given the speed of today’s computer, the
computational cost is not very high.

The iteration paths for the likelihood function and selected parameters
are presented in Figure 1. OLS estimates were used as starting values for the
parameters in θ  and an identity matrix was used for the covariance matrix of
the disturbances. The routine converged after 393 iterations when using the
stopping criteria described above. The Gibbs sampler was started with 300
simulations and increased by 15 simulations at every iteration of the EM
algorithm, i.e. ( ) ( )300 15 1mK m= + − . The number of dismissed simulations,

burnk , was kept constant at 150. The algorithm converged after 2.5 hours1.
Figure 1.

                                                
1  On an AMD Athlon XP-M 2000+, 512 MB RAM, Windows XP, Matlab 6.5.
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Iteration paths of the expected log-likelihood and selected parameter
estimates.
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2.5.- Estimation of the Information matrix

The asymptotic standard errors of the estimates are not among the outputs of
the EM algorithm and, typically, additional code needs to be appended to the
algorithm in order to estimate them. Louis’s identity (Louis, 1982) was used in
this article to obtain a Monte Carlo estimation of the information matrix (Guo
and Thompson, 1992, Ibrahim et. al., 2001). A description of how the
approach works follows. Let the complete information likelihood function be

( );cL θ x , where θ  is the full set of parameters to estimate. Then, the
observed log-likelihood can be written as,



A Monte Carlo EM...

D I V I S I Ó N  D E  E C O N O M Í A 1 5

( ) ( ) ( ) ( )
( ) ( ) ( );

; ln ; ln ; ln ; ; |
;

c
c c mL

L L
L

= = − = −l l l
θ

θ θ θ θ θ
θ
x

y y x x x y
y

(18)

where ( ) ( )
( )

;
; | ln

;

c
m L

L
=l

θ
θ

θ
x

x y
y

 is the logarithm of the complete information

likelihood function conditional on the observed information. After taking
second derivatives on both sides of (18) we have,

( ) ( ) ( )2 2 2; ; ; |
' ' '

c m∂ ∂ ∂
= −

∂ ∂ ∂ ∂ ∂ ∂
l l lθ θ θ
θ θ θ θ θ θ

y x x y
,

which can be written in terms of information matrices in order to apply the
“missing information principle” (Orchard and Woodbury, 1972),

( ) ( ) ( ); ; ;c mI I I= −θ θ θy x x | y (19)

where ( ) ( ); ;c cI E H = −  θ θx x  is the complete information matrix,

( ) ( )2 ;
;

'

c
cH

∂
=

∂ ∂
l θ

θ
θ θ

x
x  is the complete information Hessian, and ( );mI θ x | y  can

be viewed as the missing information matrix. Louis (1982) showed that this
last matrix could be written as,

( ) ( ) ( )

( ) ( ) ( ) ( )

2 ; |
; Var ;

'

                                        ; ; ' ; ; '

m
m c

c c c c

I E S

E S S E S E S

 ∂
 = − = =   ∂ ∂ 

     −     

l θ
θ θ

θ θ

θ θ θ θ

x y
x | y x

x x x x

(20)

where ( ) ( );
;

c
cS

∂
=

∂
l θ

θ
θ
x

x  is the complete information score vector. All the

expectations are taken with respect to the distribution ( )| , EMf θx y , where
EMθ  is the final MCEM estimation of θ . The evaluation of all the expectations

involved commonly prevents the estimation of the observed information
matrix in (20) by direct calculation. Monte Carlo estimates of the expected
complete information Hessian and score can be used to circumvent the
problem and estimate the terms in the right hand side of (20). To sum up, the
procedure implemented in this study is:
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Step 1. Use the Gibbs sampler described above to simulate a sequence
*( )*(1) ,..., burnR r

i i
+y y  while holding EMθ = θ . Eliminate a number burnr  of simulations

from the beginning of the sequence.

Step 2. Use the remaining simulations to estimate the expectation of the
complete and missing information matrices by using:

( ) ( ) ( ) ( )*( )

1 1 1

1;
N N R

c rc EM c EM EM r
i i i i i

i i r
I E H ; H ; |

R= = =

 = − ≅ − ∑ ∑ ∑θ θ θx x y y

( ) ( ) ( ) ( ) ( ){ }
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

' '

1

' '
* * * *

1 1 1 1

; ; ; ; ;

1 1 1, ,

N
m EM c EM c EM c EM c EM

i i i i i i i i
i

N R R R
c r r c r r c r r c r rEM EM EM EM
i i i i i i i i i i i i

i r r r

I E S S E S E S

S | S | S ; | S ; |
R R R

=

= = = =

    = −        

 
≅ − 

 

∑

∑ ∑ ∑ ∑

θ θ θ θ θ

θ θ θ θ

x | y x x x x

y y y y y y y y

Expressions for the contributions from each observation to the Hessian and
score are standard results from the theory of the multivariate normal
distribution. Finally, plug the Monte Carlo estimates of ( );cI θ x  and

( );mI θ x | y  in (20) and take the inverse of the resulting estimate of ( );I θ y  to

get the asymptotic covariance matrix of EMθ .
A sample with 3300R =  and 300burnr =  was used in this study. Results of

the Monte Carlo EM estimation of equation system (2) on the Lichtenberg and
Smith-Ramirez (2004), data are presented in Table 1.

3.- The numerical integration approach and comparison between
the two approaches.

In this section I solve by numerical integration the same model and data used
to illustrate the MCEM algorithm. The performances of the two approaches
are then compared.

The general form of the observed-information likelihood function for
the equation system (2) is,

( ) ( ) ( )

( )

1 1 1
2 2
3 3

0 0 0 0 0 0 0
* * * * * * * * * * * *
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1

0 1 2,3 00
0 0 0
0 0

0
* *
1 2 3 1

0

, , , , , ,

      , ,

i i i
i i ji
i i

i i i i i i i i i i i i i i i i ji
y y j y
y y y
y y

i i i i ji

L f y y y dy dy dy f y y y dy dy dy f y y y dy dy

f y y y dy dy

∞

= = = =−∞ −∞ −∞ −∞ −∞ −∞ −∞
= = =
= =

∞

−∞

= ⋅ ⋅ ⋅∏ ∏ ∏∏∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ( ) ( )
1 1 1

0
* * * *
1 2 3 1 1 2 3 1

2,3 1 0 1 0
0

, , , ,
i i i
ji

i i i i i i i i
j y y y

y

f y y y dy f y y y dy
∞

= = = =−∞
=

⋅ ⋅∏ ∏ ∏ ∏∫ ∫
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However, since all possible combinations of values for the dependent
variables do not exist in the data set used, the observed information
likelihood can be reduced to (Lichtenberg and Smith-Ramirez, 2004),

( ) ( )

( ) ( )

3 3 2 2 1 1

1
2
3

1 1

1 1 1 1
2 2
3 3

3 1 2 3 1 2 3
0
0
0

3 1 2 3 3 1 2 3
0 1
0 0
0 0

, | , , ,  

                                  , ,  , ,  

  

i i i

i
i
i

i

i i i
i i
i i

X X X

i i i i i i
y
y
y

X

i i i i i i i i
y y X
y y
y y

L d d d

d d

β β β

β

β

φ ε ε ε ε ε ε

φ ε ε ε ε φ ε ε ε η

− − −

= −∞ −∞ −∞
=
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= =−∞ −
> >
> >
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× =

∏ ∫ ∫ ∫

∏ ∏∫ ∫

θ y X

( )

( ) ( ) ( )

3 3 2 2 1 1

1
2
3

1 1

1
2
3

3 1 2 3 1 2 3
0
0
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2 2 3 1|2,3 1 2 3 2 2 3 1|2,3
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0
0

                        , ,  

                                  , | ,  ,
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i
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i
i

X X X

i i i i i i
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y
y

X

i i i i i i i i
y
y
y

d d d

d

β β β

β
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1
0
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d
β
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where ( )1 2 2 3 3, , , ,β γ β γ β=θ , ( ) ( )
' 1

1 222 exp
2

m
mφ π

−
−−  Σ

= Σ − 
 

ε εε  is the m -

dimensional normal pdf and ( )| , | ,j k l ji ki liφ ε ε ε  is the normal pdf of jiε

conditional on ( ),ki liε ε . After a little algebra the log-likelihood of the
observed data can be written as

( )
2 3

2 2 3
3

1 2 1 3 2 3

1 2 3
2
3

1 2 1 3

2 3
2

0
0

1 1 2 1 3 2
3

0
0
0

1 1
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1

                          ln
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y
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∑

(21)

where ( )mΦ ⋅  is the m -dimensional standard normal cdf.
In this study the log-likelihood function in (21) was maximized using the

routine FMINUNC in Matlab. I programmed the 3-dimensional standard normal



Ricardo Smith

C I D E1 8

cdf according to the methodology proposed by Steck (1958), which allows
reducing the 3-dimensional integral to functions involving only 1-dimensional
integrals of exponential functions and the univariate normal cdf. The
information matrix was calculated from a finite-difference estimation of the
Hessian of the objective function.

Starting values in the approximation area of the maximum were very
hard to find. A first attempt using OLS estimates failed to converge. A second
approach attempted to estimate the equations in (2). by pairs and then use a
combination of the resulting estimates as starting values for the 3-equation
system. Matlab routines using OLS estimates as starting values were written to
estimate these smaller equation systems. However, although convergence in
the system constituted by the second and third equations was easily
accomplished, neither the routine for the system constituted by the first and
second equations nor the one for the system constituted by the first and third
equations converged. The routines either ceased to improve in the search for
the optimum or the correlation between the disturbances escaped the
parameter space.

Finally, a grid search was implemented. To decide the dimension of the
grid, estimation attempts were made by fixing one, two, three and four
parameters in Σ . Convergence was attained only after one of the two
variances and all the correlation coefficients were fixed. Thus, a four-
dimensional grid search was implemented on those parameters. Ten equally
spaced points from –0.9 to 0.9 were chosen for the correlation coefficients
and four equally spaced points from 2 to 8 were taken for 

2ε
σ , which

generated a 4,000-point grid. The time required solving a grid of this size
easily becomes unaffordable when the objective function involves high
dimensional integrals as in (21); however, the actual number of grid points
that need to be used can be drastically reduced by two ways. First, it must be
noticed that Σ  must be kept positive definite at every moment during the
estimation. Many points in the grid described above do not satisfy that
requirement and they must be eliminated from the search. Second, since we
are interested in finding a neighborhood of the global maximum only, by
careful monitoring of the search it is possible to exclude large sets of grid
points surrounding low values of the objective function. Notice that this last
approach is advisable only when the objective function behaves smoothly. A
real risk of missing the global maximum exists otherwise. By proceeding this
way the grid search used in this study required less than 350 points to locate a
point in the approximation area of the global maximum. However, despite of
the significant reduction in the size of the grid, it took about 60 hours2 to

                                                
2 On an AMD Athlon XP-M 2000+, 512 MB RAM, Windows XP, Matlab 6.5.
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solve the grid search and make the final estimation to obtain the maximum
maximorum.. Results3 of the final estimation are presented in Table 1.

                                                
3 I have not included the variable names since these results are presented only for comparison purposes. Details can
be found in Lichtenberg and Smith-Ramirez (2004).
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Table 1
ML estimates obtained by Numerical Integration and Monte Carlo EM algorithm

Equation 1 Equation 2 Equation 3

Numerical Integration
MCEM

Numerical Integration
MCEM

Numerical Integration
MCEMParam

eter Estim. St. err. Estim. St. err.

Para

meter Estim. St. err. Estim. St. err.

Param

eter Estim. St. err. Estimate St. err.

2γ -3.7074 1.0037 -3.6860 0.6633 3γ -0.9229 0.5486 -0.9163 0.3701

1,1β -0.7881 0.8856 -0.7987 0.8661 2,1β 5.6232 1.7064 5.6173 1.6708 3,1β 2.4189 0.8131 2.4572 0.8024

1,2β -0.2282 0.1515 -0.2259 0.1481 2,2β -0.8770 0.2572 -0.8756 0.2557 3,2β -0.2127 0.1234 -0.2175 0.1237

1,3β 0.2126 0.1246 0.2108 0.1156 2,3β 0.5992 0.2212 0.5981 0.2189 3,3β 0.2409 0.1055 0.2474 0.1055

1,4β 0.5194 0.2436 0.5245 0.2364 2,4β 0.7933 0.5164 0.7917 0.5109 3,4β 0.1260 0.2447 0.0919 0.2452

1,5β 0.1809 0.0598 0.1807 0.0591 2,5β 0.1665 0.1404 0.1656 0.1376 3,5β -0.0077 0.0670 -0.0045 0.0660

1,6β -0.0254 0.0374 -0.0255 0.0349 2,6β 0.1776 0.0683 0.1777 0.0682 3,6β 0.1279 0.0322 0.1279 0.0326

1,7β -0.6267 0.4196 -0.6193 0.4132 2,7β -0.3023 0.9046 -0.2999 0.8983 3,7β 0.2795 0.4265 0.1697 0.4310

1,8β 0.6602 0.2999 0.6603 0.3009 2,8β 2.9621 0.9029 2.9580 0.8907 3,8β 0.1504 0.4280 0.1656 0.4259

1,9β 0.2370 0.4209 0.2368 0.4196 2,9β 0.9667 0.9991 0.9667 0.9861 3,9β 0.0294 0.4704 0.0008 0.4715

1,10β -0.5050 0.4405 -0.5042 0.4364 2,10β -0.4288 0.9658 -0.4272 0.9424 3,10β -0.9509 0.4544 -0.9809 0.4512

1,11β -0.4257 0.4467 -0.4211 0.4372 2,11β 1.1889 0.9724 1.1912 0.9567 3,11β -0.1385 0.4567 -0.1933 0.4570

1,12β 0.7764 0.5478 0.7765 0.5484 2,12β 1.9579 1.4739 1.9549 1.4671 3,12β 1.0929 0.6942 1.1256 0.6993
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1,13β 1.5578 0.6997 1.5608 0.6946 2,13β 2.4029 2.0006 2.3937 1.9660 3,13β 0.3721 0.9544 0.3632 0.9447

1,14β 0.8016 0.3230 0.7989 0.3147 2,14β 2.7804 0.5673 2.7797 0.5651 3,14β 0.9317 0.2699 0.9430 0.2720

1,15β -0.3057 0.3915 -0.2967 0.3720 2,15β 0.8671 0.8077 0.8654 0.8013 3,15β -0.5440 0.3825 -0.6334 0.3864

1,16β -0.5323 0.3793 -0.5337 0.3714 2,16β 2.2971 0.8371 2.2984 0.8327 3,16β 0.5500 0.3952 0.5474 0.3974

1,17β -0.2323 0.2829 -0.2327 0.2629 2,17β 0.6061 0.4912 0.6062 0.4891 3,17β 0.0311 0.2321 0.0364 0.2338

1,18β -0.7459 0.2661 -0.7483 0.2534 2,18β -0.4733 0.5233 -0.4723 0.5186 3,18β -1.0625 0.2484 -1.0542 0.2485

1,19β 0.3718 0.2607 0.3725 0.2449 2,19β 0.4493 0.4998 0.4481 0.4973 3,19β -0.6189 0.2362 -0.6046 0.2378

1,20β 0.4153 0.5098 0.4219 0.4890 2,20β 0.4398 1.2337 0.4407 1.2298 3,20β -1.2735 0.6017 -1.2638 0.6035

1,21β -2.1581 0.9470 -2.1740 0.8672 2,21β 0.5753 1.2234 0.5797 1.2053 3,21β -0.1927 0.5817 -0.1420 0.5771

1,22β -1.0930 1.0749 -1.0957 0.6018 2,22β -3.6848 1.0036 -3.6882 1.0091 3,22β -1.7546 0.5032 -1.7449 0.5119

1,23β -1.9051 0.5381 -1.9013 0.4659

1,24β 0.2723 0.3561 0.2740 0.3431

1,25β -0.2717 0.5340 -0.2715 0.4657

12σ 2.9339 0.4003 2.9217 0.0966

13σ 0.7756 0.2481 0.7823 0.0609 23σ 4.9290 0.5513 4.9887 0.2782

22σ 16.0218 1.6406 16.001 0.6411 33σ 3.5432 0.3591 3.6201 0.1633
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Figure 2
Comparison between numerical integration and MCEM estimates.
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Graphical comparisons between the estimates obtained by numerical
integration and those obtained by the MCEM algorithm are depicted in Figure
2. The remarkable match in the parameter estimates proves that both
approaches converged to the same maximizer. The main difference, of
course, is the robustness of the MCEM to the election of starting values, which
allowed achieving the solution in less than one-twentieth of the time needed
when using numerical integration. Certainly, the use of QMC integration or
the use of probability simulators may help to reduce the estimation time
when using the numerical integration approach. Yet, these methods only
provide an alternative to estimate the integral terms in the likelihood
function. They do not help neither with problems of “practical” identification
nor with the starting value problem.

The matching for the standard errors in table 1, however, is not that
close. The lower graph in Figure 2 shows that, in general, the standard errors
obtained by using a finite-difference Hessian are larger than those produced
by Louis’ method. In an attempt to reduce the disparity, the simulation size
used to estimate the information matrix in the Monte Carlo approach was
enlarged from 3300R =  to 5300R = . However, no significant change was
observed in the estimates.

In order to determine if the origin of the mismatch was in the Hessian
estimated by finite differences, the Hessian estimation was repeated several
times reducing iteratively the size of the perturbation size4. This approach
reduced the mismatch, which suggests that the origin of the problem is in the
numerical estimation of the Hessian. The size of the perturbation, however,
cannot be reduced arbitrarily. The numerical integration approach used to
estimate the likelihood function in (21) may be free of Monte Carlo error but
it has inaccuracies originated in the numerical integration procedure. This
fact sets a lower bound for the size of the perturbation that we can use to
estimate the Hessian: it cannot be smaller than the estimation error of the
likelihood function. The accuracy of the numerical integrals can, certainly, be
increased; however, it is well known that the computational costs of
proceeding that way increment exponentially. Figure 2 presents the standard
errors for a percentage perturbation equal to 10-4.

The limitations of the numerical Hessian approach contrast with the
advantages of the stochastic version of the Louis’ method. Louis’ method is
easy to implement and we can use it to obtain standard errors with any
needed accuracy simply by increasing the number of simulations. Doing this is
relatively inexpensive since the score and the Hessian of the expectation in
(5) exists in closed form and their calculation involves only matrix algebra.

                                                
4 By perturbation size I mean the magnitude of the finite difference used to calculate the numerical derivatives
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4.- Implementing the Monte Carlo EM algorithm for models with
latent endogenous regressors

This section extends the MCEM algorithm presented in the last section in order
to include systems of structural equations, i.e. cases where latent variables
show up on both sides of the equations. Only for the purpose of illustrating
the flexibility of the method, consider again the equation system (2) but now
with *

1iy  instead of 1iy  at the right-hand side of the second and third
equations, and 1iy  defined as a polytomous variable,

*
1 0 1 1

*
2 1 1 2

1

*
1 1

  if  

  if  

    if  

i

i
i

k k i k

b a y a
b a y ay

b a y a−

 < ≤


< ≤= 

 < ≤

M
(22)

The structural model is now,

*
1 1 1 1
* *
2 2 1 2 2 2
* *
3 3 1 3 3 3

i i i

i i i i

i i i i

y X
y y X
y y X

β ε

γ β ε

γ β ε

= +

= + +

= + +

(23)

Thus, under the normality assumption, the complete data likelihood function
can be written as,

( ) ( )
( )

' 1
* * *
1 2 3 1 23 2

1, , | , , exp
22

i i
i i i

i i
L f y y y ε ε

π

−  Σ
Γ Σ = = −  

Γ Σ   
∏ ∏β x

where ( )1 2 3, ,β β β=β , 
2 31

0 1 0
0 0 1

γ γ− − 
 Γ =  
  

, 

*
1 1 1 1

* *
2 2 2 1 2 2

* *
3 3 3 1 3 3

i i i

i i i i i

i i i i

y X
y y X
y y X

ε β
ε ε γ β

ε γ β

 − 
  = = − −  

   − −   

, and

Σ  is defined as in (3).

Correspondingly, the complete information log-likelihood function and its
expectation are:

( ) ( ) ( )1 '3 1, , | ln 2 ln ln tr
2 2 2

c
i i

i

N NNπ ε ε−Γ Σ = − − Γ − Σ − Σ∑l β x (24)
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( ) ( ) 1 '3 1, , | ln 2 ln ln tr
2 2 2

c
i i

i

N NE N Eπ ε ε−    Γ Σ = − − Γ − Σ − Σ     
∑l β x (25)

Where N  is the total number of observations and the expectation operator
indicates expectation conditional on observed information and distribution
assumptions. The E-step at iteration 1m +  requires the calculation of,

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

'

'* *
1 1 1 1 1 1

* * * *
2 2 1 2 2 2 2 1 2 2
* * * *
3 3 1 3 3 3 3 1 3 3

, , | , , , | , , ,

                              | , , ,

m m m m m m
i i i

i i i i
m m m

i i j i i j

i i j i i j

Q E

y X y X
E y y X y y X

y y X y y X

ε ε

β β
γ β γ β
γ β γ β

 Γ Σ Γ Σ = Γ Σ 
   − −
  

= − − − − Γ Σ  
  − − − −   

β β β

β

y y

y

( )

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

* *
1 1

* * * *
2 1 2 1

* * * *
3 1 3 1

'

1 1 1 1

2'
2 2 2 2 2 2

3 3 3 3 3 3

                                  
i i

i i i i

i i i i

m m
i iy y

m m m mm
i ii y y y y

m m m m
i iy y y y

X X

X X

X X

µ β µ β

µ γ µ β µ γ µ βσ

µ γ µ β µ γ µ β






  − −
  
  − − − −= Γ Γ +
  
    − − − −  

     (26)

Where ( )2 m
iσ  and ( )

*
ji

m
y

µ  are defined as in expressions (7) and (8). Some small

modifications must be introduced to the Gibbs sampler implemented in
section 3.2 in order to estimate these moments. The conditional mean ( )

| ( )
m
ji i jµ −

must be now estimated according to,

( ) ( ) ( )( ) ( )( ) ( ) ( )( )
1

* * * * *
| ( ) | | | | |cov , covm m m m m m
ji i j ji j ji i j i j i j i j j i j jX yµ β

−

− − − − − − − −
 = + Σ Σ − −  

γ βy y y y X

where, ( )

( )

( )

( )

( )

1

1

1

  

 

m

m
jm

j m
j

m
k

γ

γ

γ

γ

−
−

+

 
 
 
 
 =  
 
 
  
 

M

M

γ

To construct a sample conditional on the observed information as defined in
(22) proceed as follow. For every 1 1ia y aκ κ +< ≤  simulate *

1iy  from a normal

distribution with mean ( )
1 | ( 1)
m
i iµ −  and variance ( )2

1 | 1
m
iσ −  truncated below at aκ  and

truncated above at 1aκ + . Do the same for every 0,1,2,...kκ = , where k  is the
number of intervals defined by the polytomous variable.
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Simulations for the unobserved values of *
2iy  and *

3iy  are obtained in the same
way as in Section 2.2.

The maximization step does not differ significantly from the case
analyzed previously except by the presence of Γ  in the log-likelihood
function, which motivates a slight change in the arguments of the conditional
maximization steps. The objective function is,

( ) ( ) ( ) ( )( )13 1ln 2 ln ln tr , , | , , ,
2 2 2

m m m
i

i

N NN Qπ − 
− − Γ − Σ − Σ Γ Σ Γ Σ 

 
∑ β β y (27)

The first conditional maximization updates β  conditional on the elements in
Γ  and Σ . From (26) the estimate of β  can still be written as a generalized
least squares estimator:

( ) ( )( ) ( )( ) ( )
*

11 11 ' ' ˆm m m m
d N d d N y
X I X X I µ

−− −+  = Σ ⊗ Σ ⊗  
β (28)

where,

1

2

3

0 0
0 0
0 0

d

X
X X

X

 
 =  
  

, ( ) ( )( ) ( )
* *

'ˆ m m m
Ny y
Iµ µ= Γ ⊗ , NI  is the identity matrix of

dimension N  and ( )
*
m
y

µ  is the column vector defined in (15).

The second conditional maximization updates Γ  and Σ  conditional on the
updated estimate of β . Numerical techniques must be used in this step to
maximize,

( ) ( ) ( ) ( ) ( )( )113 1ln 2 ln ln tr , | , , ,
2 2 2

m m m m
i

i

N NN Qπ +− − − Γ − Σ − Σ Γ Γ Σ 
 

∑ β β y

with respect to the elements in Γ  and Σ  and obtain estimates for ( )1m+Γ  and
( )1m+Σ . Notice that the second term in the objective function vanishes in this

particular example as Γ  is triangular.
It is evident that the combination of the Expectation and Maximization

steps as described here can be extended to admit systems with a larger
number of linear equations involving any type of latent variables. Only small
adjustments to the Gibbs sampler in order to take into account the types of
latent variables involved are necessary.
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Conclusions

This article has presented a MCEM algorithm suitable for estimating systems of
simultaneous equations and structural models that contain latent variables.
The applicability of the model is independent of whether the latent variables
appear in the model as dependent variables or as endogenous regressors. The
general formulation presented in Section 4 permits that the algorithm can be
applied to solve a variety of models with latent structures from a one-
equation tobit to a n-equation multinomial probit. Only small adjustments in
the Gibbs sampler are necessary to shift from one model to another in order
to internalize the type of latent variables involved and the nature of the
unobserved information in the different models.

The MCEM algorithm as formulated in this article has a number of
advantages over more traditional methods. First, it does not require
integrating the unobserved information out from the likelihood function. This
characteristic reduces the estimation time dramatically as no numerical
integration is needed and, similarly to methods based on probability
simulators, permits to solve problems involving more than three latent
variables. Second, it reduces the estimation of the vector of slopes to the
calculation of a GLS estimator and numerical optimization is required only to
estimate the elements in the disturbance covariance matrix. Since the GLS
estimator and the gradient and Hessian of the objective function for the
estimation of the disturbance covariance matrix have closed forms, almost no
time is consumed in the Maximization step and it is easier to keep the whole
set of parameters in the parameter space. This property of the MCEM reduces
substantially the problems of “fragile” identification and selection of starting
values, which are serious limitations of traditional approaches. Third, it can
accommodate potentially any linear-in-parameters equation system. This is
valid not only for the cross-sectional models mentioned above but also for
panel data models and stochastic frontier models, where the random effects
and efficiency terms can be treated as one more latent variable. Finally, the
estimation of standard errors by the Louis method circumvents the limitations
associated to the estimation of numerical Hessians by finite-difference
methods, which is the standard in traditional procedures. The accuracy of the
estimates of the standard errors can be improved easily by increasing the
number of simulations of a closed form of the Information matrix, which is
much less expensive than reducing the perturbation size in the numerical
Hessian approach.
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