Show simple item record

dc.creatorMayer-Foulkes, David
dc.date.issued1998
dc.identifier1286.pdf
dc.identifier.urihttp://hdl.handle.net/11651/3661
dc.description.abstractOne of the problems plaguing these applications has been the large data requirements of these statistical procedures. Time series numbering 20,000 are common in physical science applications, while results of applications to shorter time series with lengths between 500 and 2,000 -it being difficult enough to obtain such economic data- have suffered from a bias towards low dimensions in the statistical results. The purpose of this paper is to prosent a modified statistic which not only calculates dimension and simultaneously tests for the IID null, but is also not biased towards Iow dimensions and more sensitive to the presence of stochastic structure in the shorter time series mentioned above.
dc.formatapplication/PDF
dc.language.isoeng
dc.publisherCentro de Investigación y Docencia Económicas, División de Economía
dc.relation.ispartofseriesDocumento de trabajo (Centro de Investigación y Docencia Económicas). División de Economía; 14
dc.rightsEl Centro de Investigación y Docencia Económicas A.C. CIDE autoriza a poner en acceso abierto de conformidad con las licencias CREATIVE COMMONS, aprobadas por el Consejo Académico Administrativo del CIDE, las cuales establecen los parámetros de difusión de las obras con fines no comerciales. Lo anterior sin perjuicio de los derechos morales que corresponden a los autores.
dc.subject.lcshStochastic processes.
dc.titleAn alternative correlation dimension statistic
dc.typeDocumento de trabajo
dc.accessrightsAcceso abierto
dc.recordIdentifier000001286
dc.rights.licenseCreative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 International CC BY-NC-ND


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record