Classification of public procurement procedures based on red flags with a machine learning approach for the detection of possible risk of corruption
Fecha de publicación
2023Author
Martínez Arévalo, Emilio Perfecto
Formato
application/PDF
URL del recurso
http://hdl.handle.net/11651/5725Idioma
eng
Acceso
Acceso abierto
Compartir
Metadata
Show full item recordAbstract
This study addresses corruption in public procurement by integrating machine learning and red flags. Objectives include evaluating red flags’ impact on corruption detection using machine learning models and comparing different algorithms’ performance. Using data from Mexico’s CompraNet platform, red flags—indicators of potential corruption— are incorporated. Supervised machine learning models (e.g., XGBoost, Random Forest, Logistic Regression) are trained and evaluated with using both inputs, with and without red flags variables. The key findings of this study underscore the significant positive influence of red flags on the accuracy of corruption detection across various machine learning models. The integration of red flags consistently improves precision, recall, and F1-scores, reaffirming their effectiveness as valuable corruption risk indicators. Furthermore, the comparative assessment of machine learning algorithms reveals variations in performance, emphasizing the critical nature of model selection. In conclusion, red flags effectively help to improve the detection of potential corruption risks in public procurement. Machine learning’s role in leveraging red flags shows promise for corruption detection. These insights have implications for public governance and policymaking, emphasizing the potential of data-driven approaches in mitigating corruption’s adverse effects. Furthermore, this research highlights avenues for future exploration, such as tailored red flag frameworks, real-time detection, and cross-domain application, providing a comprehensive outlook for advancing corruption detection and prevention strategies.
Editorial
El Autor
Derechos
Con fundamento en los artículos 21 y 27 de la Ley Federal del Derecho de Autor y como titular de los derechos moral y patrimonial, otorgo de manera gratuita y permanente al Centro de Investigación y Docencia Económicas, A.C. y a su Biblioteca autorización para que fije la obra en cualquier medio, incluido el electrónico, y la divulguen entre sus usuarios, profesores, estudiantes o terceras personas, sin que pueda percibir por tal divulgación una contraprestación.
Grado
Maestría en Métodos para el Análisis de Políticas Públicas
Tipo
Tesis de maestría
Asesor
Dra. Daniela Alejandra Moctezuma Ochoa
Cita
Martínez Arévalo, Emilio Perfecto. "Classification of public procurement procedures based on red flags with a machine learning approach for the detection of possible risk of corruption". Tesis de maestría. Centro de Investigación y Docencia Económicas, 2023. http://hdl.handle.net/11651/5725Materia
Government purchasing -- Corrupt practices -- Effect of prevention on -- Mexico -- Case studies.
Electronic contracts -- Mexico -- Case studies.
CompraNet -- Evaluation.