A robust Bayesian dynamic linear model for Latin-American economic time series: ‘‘the Mexico and Puerto Rico cases’’
Fecha de publicación
2015-07-28Author
Fúquene, Jairo
Álvarez, Marta
Pericchi, Luis Raúl
Formato
application/PDF
URL del recurso
http://hdl.handle.net/11651/3202Idioma
eng
Acceso
Acceso abierto
Compartir
Metadata
Show full item recordAbstract
The traditional time series methodology requires at least a preliminary transformation of the data to get stationarity. On the other hand, robust Bayesian dynamic models (RBDMs) do not assume a regular pattern or stability of the underlying system but can include points of statement breaks. In this paper we use RBDMs in order to account possible outliers and structural breaks in Latin American economic time series. We work with important economic time series from Puerto Rico and Mexico. We show by using a random walk model how RBDMs can be applied for detecting historic changes in the economic inflation of Mexico. Also, we model the Consumer Price Index, the Economic Activity Index and the total number of employments economic time series in Puerto Rico using local linear trend and seasonal RBDMs with observational and states variances. The results illustrate how the model accounts the structural breaks for the historic recession periods in Puerto Rico.
Editorial
Centro de Investigación y Docencia Económicas
Derechos
La revista Latin American Economic Review autoriza a poner en acceso abierto de conformidad con las licencias CREATIVE COMMONS, aprobadas por el Consejo Académico Administrativo del CIDE, las cuales establecen los parámetros de difusión de las obras con fines no comerciales. Lo anterior sin perjuicio de los derechos morales que corresponden a los autores.
Tipo
Artículo